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A neural network based model 
effectively predicts enhancers from 
clinical ATAC-seq samples
Asa Thibodeau1, Asli Uyar1, Shubham Khetan1,2, Michael L. Stitzel1,3 & Duygu Ucar   1,3

Enhancers are cis-acting sequences that regulate transcription rates of their target genes in a 
cell-specific manner and harbor disease-associated sequence variants in cognate cell types. Many 
complex diseases are associated with enhancer malfunction, necessitating the discovery and study of 
enhancers from clinical samples. Assay for Transposase Accessible Chromatin (ATAC-seq) technology 
can interrogate chromatin accessibility from small cell numbers and facilitate studying enhancers in 
pathologies. However, on average, ~35% of open chromatin regions (OCRs) from ATAC-seq samples 
map to enhancers. We developed a neural network-based model, Predicting Enhancers from ATAC-Seq 
data (PEAS), to effectively infer enhancers from clinical ATAC-seq samples by extracting ATAC-seq 
data features and integrating these with sequence-related features (e.g., GC ratio). PEAS recapitulated 
ChromHMM-defined enhancers in CD14+ monocytes, CD4+ T cells, GM12878, peripheral blood 
mononuclear cells, and pancreatic islets. PEAS models trained on these 5 cell types effectively predicted 
enhancers in four cell types that are not used in model training (EndoC-βH1, naïve CD8+ T, MCF7, and 
K562 cells). Finally, PEAS inferred individual-specific enhancers from 19 islet ATAC-seq samples and 
revealed variability in enhancer activity across individuals, including those driven by genetic differences. 
PEAS is an easy-to-use tool developed to study enhancers in pathologies by taking advantage of the 
increasing number of clinical epigenomes.

Enhancers are non-coding cis-regulatory elements that precisely regulate expression patterns of genes controlling 
cell type-specific functions and developmental fate1. In eukaryotic cells, the regulation of gene expression results 
from a complex organization of enhancers serving as binding sites for transcription factors (TFs), which together 
determine whether a particular gene will be active or silent. Epigenomic maps have been effective in enumer-
ating enhancer sequences in diverse cells/tissues. For example, mono-methylation of lysine 4 on histone H3 
(H3K4me1) and acetylation of lysine 27 on histone H3 (H3K27ac) have been shown to mark active enhancer 
sequences2. Similarly, the transcriptional co-activator p300 has been effective in identifying putative enhancers3,4. 
Consortia efforts, notably ENCODE5 and Roadmap Epigenomics6 projects, have systematically profiled refer-
ence epigenomes from diverse human cells and computationally described regulatory states, including putative 
enhancers in these cell types5–8. However, epigenomes of many human tissue and cell types remain unprofiled. 
Furthermore, epigenomic states under pathologic conditions have not been profiled by these consortia (e.g., 
epigenomes of diabetic islets). Characterizing such epigenomic profiles is particularly important for genomic 
medicine, as the majority of disease-associated sequence variants discovered via genome-wide association studies 
(GWAS) are found in non-coding enhancer sequences, likely affecting enhancer activity and not directly altering 
gene sequences and protein function9,10. Among the tools developed by the ENCODE consortium5, the Hidden 
Markov Model (HMM)–based ChromHMM algorithm7 has become an important tool to assess the global epig-
enomic landscape in human cells by segmenting genome-wide chromatin into a finite number of chromatin states 
(corresponding to functional regulatory elements) based on combinatorial histone modification marks profiled 
by ChIP-seq technology. Although ChromHMM has been very powerful in finding regulatory elements in diverse 
human cell types5,6,8, ChromHMM cannot be applied on clinical samples since the datasets that it stem from (i.e., 
multiple ChIP-seq profiles) cannot be easily generated in these samples.

1The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. 2Department of Genetics and Genome 
Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA. 3Institute for Systems Genomics, 
University of Connecticut Health Center, Farmington, CT, 06030, USA. Asa Thibodeau and Asli Uyar contributed 
equally. Correspondence and requests for materials should be addressed to D.U. (email: duygu.ucar@jax.org)

Received: 13 July 2018

Accepted: 16 October 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-9772-3066
mailto:duygu.ucar@jax.org


www.nature.com/scientificreports/

2Scientific Reports |         (2018) 8:16048  | DOI:10.1038/s41598-018-34420-9

A number of computational methods have been proposed to infer putative enhancers11–26 (summarized in 
Supplementary Table S1), ranging from the identification of highly conserved sequences across species to the 
detection of genomic regions with specific histone modification profiles, including our prior work based on neu-
ral networks24. Different machine learning algorithms have been previously employed by these methods includ-
ing Hidden Markov models (HMMs)7,25,26, random forests11,13,20, support vector machines (SVMs)15,19,21–23, and 
artificial neural networks12,14,17,19,24,27. These methods discriminate enhancers from non-enhancers, where most 
incorporate features driven from ChIP-seq histone modification data into the predictive models11,13,14,16–22,24–26, 
whereas a smaller subset only utilize DNA sequence as the input data12,15,23. Among the methods we reviewed, 
open chromatin regions (OCRs) have been used in two main ways. First, chromatin accessibility data have 
been included directly into model training11,14,16,21, integrating them with other “omics” datasets such as histone 
mark ChIP-Seq profiles. Second, OCRs were used to validate enhancer predictions11–14,17–20,22–26, assuming that 
all noncoding OCRs are enhancers. Assays that require millions of cells to profile epigenomic landscapes (e.g., 
ChIP-seq) cannot be easily applied to predict enhancers in clinical samples that can only be obtained in small 
quantities while methods based solely on DNA-sequence are limited in their ability to predict cell-specific and 
individual-specific enhancers.

Assay for Transposase Accessible Chromatin (ATAC-seq) technology28,29 revolutionized epgenomic profiling 
by enabling chromatin accessibility profiling from small cell numbers. This technology has been widely utilized 
to study epigenomes of clinically-relevant human cells under diverse conditions30,31, including our work to study 
immunosenescence in blood-derived immune cells32 and type 2 diabetes (T2D) in pancreatic islets33. ATAC-seq 
captures regulatory elements with high precision, and therefore is an ideal assay to study enhancers in clinically 
relevant human cells. However, only a portion (~35% on average) of open chromatin regions (OCRs) obtained 
from ATAC-seq samples map to enhancers. Hence, there is a need to develop computational methods to discrim-
inate OCRs mapping to enhancers from the remaining cis-regulatory elements. For this purpose, we developed 
a machine-learning framework based on neural networks (PEAS: Predicting Enhancers from ATAC-Seq data) 
to infer enhancers from ATAC-seq profiles (Fig. 1) by extracting and integrating ATAC-seq related data features 
(e.g., peak length) with sequence related features (e.g., GC%). ATAC-seq is the only “omics” profile used in this 
framework, therefore PEAS can effectively infer enhancers from clinical samples profiled with this technology, 
overcoming the limitations of existing methods.

In this study, we showed PEAS’s ability to recapitulate ChromHMM-defined enhancers7 in five human cell 
types: GM12878, CD4+ T cells, CD14+ monocytes, peripheral blood mononuclear cells (PBMCs) and pan-
creatic islets using both publicly available and in-house ATAC-seq libraries. Next, we showed that, by integrat-
ing data across these five cell types, we can predict enhancers from the ATAC-seq profile of cell types that are 
not used in model training (EndoC-βH1 beta cell line, naïve CD8+ T cells, and ENCODE cell lines MCF7 and 
K562), suggesting that PEAS can predict enhancers in cell types that are not profiled by Roadmap/ENCODE 
consortia. Lastly, we applied PEAS on islet ATAC-seq data from 19 individuals and showed its ability to identify 
enhancers at the individual level. Enhancer predictions from these 19 individuals aligned well with islet chro-
matin accessibility quantitative trait loci (caQTLs) inferred from the same cohort33, suggesting that some of this 
variability in enhancer activity is genetically driven. Furthermore, enhancer predictions in individual islet sam-
ples helped annotate OCRs associated with T2D disease state33. To the best of our knowledge, PEAS is the first 
enhancer-prediction algorithm that is designed specifically to be applied to analyze clinical ATAC-seq samples. 
It is a method that opens the door to study enhanceropathies34 (i.e., complex disorders associated with enhancer 
malfunctions) with increased precision even when reference annotations are missing. PEAS was developed using 
scikit-learn35 and is accompanied by a user interface developed in Java to enable other researchers to easily predict 
enhancers in their ATAC-seq samples (https://github.com/UcarLab/PEAS).

Results
PEAS framework.  PEAS extracts and integrates chromatin accessibility and sequence-related features. 
Each ATAC-seq OCR is represented using 24 data features (Table 1) and annotated with the corresponding 
ChromHMM state for this region in the same cell type (Fig. 1, step 1). ChromHMM states were used as class 
labels (ground truth) for model building and cross-validation after evaluating two alternative enhancer defini-
tions: p300 binding sites and FANTOM5 enhancers36,37. After careful evaluation of six classification algorithms 
(neural networks, support vector machines (SVM), random forest, k-nearest neighbor (K-NN), Naïve Bayes, and 
quadratic discriminant analysis (QDA)), neural networks were implemented in PEAS framework based on their 
flexibility for the number of classes used in training and testing and their performance in discriminating enhanc-
ers from non-enhancer OCRs. We built and compared PEAS models using ATAC-seq data in five different human 
cell types: GM12878 cell line and four primary cell types, namely CD4+ T cells, PBMCs, CD14+ monocytes, and 
pancreatic islets. These models were i) trained and tested using data from a single cell type (i.e., cell-type-specific 
models) or ii) trained by integrating data from all five cell types (i.e., combined models) and tested on a four other 
cell types (Fig. 1, step 2). To test the efficacy of combined models, we generated ATAC-seq data in EndoC-βH1 
beta cells, an important cell line for studying T2D, and tested PEAS’s efficacy to predict enhancers in EndoC-βH1 
cells in addition to enhancers in naïve CD8+ T cells, MCF7 and K562 cell lines (Fig. 1, step 3). Our analyses 
showed that combined models can effectively infer enhancers these four cell types, paving the way for enhancer 
predictions in cell types that are not profiled by ENCODE5 and Roadmap6 consortia. Finally, we applied PEAS on 
islet ATAC-seq samples from 19 individuals and evaluated its performance to infer individual-specific variation 
in clinically-relevant enhancer use (Fig. 1, step 4).

ATAC-seq profiles in nine human cell types.  We studied ATAC-seq data from primary pancreatic 
islets (n = 19)33, PBMCs and CD14+ monocytes from healthy young donors (n = 1 per cell type)32, CD4+ T 
cells28 (GEO: GSE47753), naïve CD8+ T cells32, GM12878 lymphoblastoid cell line28, EndoC-βH1 beta cell line 
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(manuscript under revision), K56238 (GEO: GSE101512) and MCF739 (GEO: GSE97583) cell lines. Open chro-
matin regions (OCRs) in these cells were identified using MACS240 (Methods), resulting in ~12,000 to ~128,000 
OCRs per sample (Supplementary Table S2). Pairwise correlations of genome-wide chromatin accessibility 
patterns separated cells first based on their lineage (pancreatic vs. hematopoietic), next based on the cell type 
(monocyte vs. T cell), and finally based on the individuals (i.e., islet samples from 19 individuals) (Fig. 2a). Next, 
we annotated ATAC-seq data from different cell types/individuals using ChromHMM annotations in the match-
ing cell type (Methods). This analysis revealed that 19–50% of OCRs map to ChromHMM-defined enhancers, 
19–56% to promoters, and 8–56% to other functional states (insulators, transcription related loci, etc.) (Fig. 2b, 
Supplementary Fig. S1a).

Among these functional states, enhancers play a critical role in human diseases34 and in governing 
cell-specific41 and individual-specific regulatory programs42. Hence, precise annotation of enhancers from 
ATAC-seq data will be instrumental in studying enhancers that play a role in pathologies (i.e., enhanceropa-
thies). We observed that enhancers have different characteristics than promoters and other functional states when 
their ATAC-seq (e.g., peak length) or sequence features (e.g., GC ratio) were compared (Fig. 2c, Supplementary 
Fig. S1b–d). For example, OCRs mapping to ChromHMM-defined enhancers harbor more inserts than OCRs 
mapping to other states, whereas these OCRs harbor less inserts than OCRs mapping to promoters (Fig. 2c, row  
‘# of All Inserts’). Similarly, OCRs mapping to enhancers are higher in CpG ratio compared to other states and 

Figure 1.  Summary of the PEAS framework. Features were extracted from ATAC-seq bam files and genomic 
sequences for each OCR. OCRs were described based on 24 data features and labeled using ChromHMM states 
(step 1). Classification models were built in 5 cell types (GM12878, PBMC, CD4+ T, CD14+ monocytes and 
islets) using MLP neural networks (step 2). We built a combined model for predictions in cell types without 
annotations by pooling data across five different cell types (step 3), which we applied on EndoC-βH1, naïve 
CD8+ T, K562, and MCF7 ATAC-seq data. Individuals’ enhancers were predicted from islet ATAC-seq samples 
(n = 19) using a model trained in islet cells (step 4).
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lower in CpG ratio compared to promoters (Fig. 2c, row ‘CpG%’). Furthermore, these patterns are conserved 
across cell types, suggesting that although enhancers are distributed across the genome in a cell-specific manner, 
their data characteristics are conserved (see Supplementary Fig. S2a for examples of shared and cell-specific 
enhancers). These results suggest that different regulatory elements have different ATAC-seq data characteristics, 
which can be exploited in machine-learning models.

Neural networks can discriminate enhancers, promoters, and remaining functional states.  To 
choose class label annotations in the PEAS framework, we first built models to predict all ChromHMM states cor-
responding to different regulatory elements (7- and 8-way classification results shown in Supplementary Fig. S3) 
using neural network models, which inherently enable multi-class predictions. These analyses revealed that these 
predictive models typically discriminated promoters and enhancers from the rest of the functional states, whereas 
they did not further separate other functional states from each other (i.e., insulator, repressed, transcription) 
(confusion matrices shown in Supplementary Fig. S3). Therefore, we decided to group together OCRs that do 
not map to enhancers or to promoters into a single class in our models, referred to as “other” regulatory elements 
throughout the manuscript, resulting in three class labels: promoters, enhancers, and other. OCRs mapping to 
promoters can either be identified and excluded from the analyses using their distance to transcription start sites 
(TSS) or their ChromHMM annotations. Throughout this study, we excluded OCRs mapping to ChromHMM 

Figure 2.  ATAC-seq profiles and enhancer predictions in different human cell types. (a) Pairwise spearman’s 
correlations of genome-wide ATAC-seq read distributions for studied cell types: GM12878, CD14+, PBMC, 
CD4+ T, EndoC-βH1, naïve CD8+ T, K562, MCF7, and islets (n = 19). Samples first clustered based on their 
lineage, then the cell type, then the individuals. (b) Distribution of ChromHMM annotations for ATAC-seq 
peaks called (OCRs) in CD4+ T, GM12878, CD14+ monocytes, PBMCs, EndoC-βH1, naïve CD8+ T, K562, 
MCF7, and one representative islet sample. For each analysis, ChromHMM annotations in the cognate cell 
type were used. Note that 19–50% of ATAC-seq peaks mapped to enhancers. (c) The log2 ratio of normalized 
features for group means: enhancer/promoter and enhancer/other in nine different cell types. A representative 
islet sample is shown here. Note that enhancers have different data characteristic than promoters and “other” 
regulatory elements and these characteristics were conserved across cell types. (d) Receiver operating 
characteristic (ROC) area under the curve (AUC) values based on five-fold cross-validation using different 
algorithms: neural network, random forest, support vector machines (SVM), k-nearest neighbor (KNN), 
quadratic discriminate analysis (QDA), and naïve Bayes. Neural network models are utilized in the PEAS 
framework based on their overall performance.
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promoter states in our models for enhancer prediction. Alternatively, one can also build discriminative models 
to first separate OCRs mapping to promoters from the rest of the OCRs using the ChromHMM states as we have 
shown in Supplementary Table S3. Accordingly, in the PEAS software (https://github.com/UcarLab/PEAS), we 
provide two options for handling promoters: i) excluding them using TSS distance or ii) using a model previously 
trained to discriminate them based on ChromHMM promoter states.

Neural networks outperform other algorithms for enhancer predictions.  Machine learning mod-
els can learn data characteristics (i.e., features) of ATAC-seq OCRs that map to known enhancers and predict 
enhancers from individual ATAC-seq samples. For this task, we chose representative algorithms from diverse 
classification methods and evaluated six algorithms as part of the PEAS framework: neural networks, support 
vector machines (SVM)43,44, random forest, k-nearest neighbor (K-NN), naïve Bayes, and quadratic discriminant 
analysis (QDA). Using 5-fold cross validation, we assessed the predictive power of these different algorithms for 
discriminating enhancer states from “other” non-promoter states using binary classification. Grid search was 
conducted for each algorithm to identify the most effective parameter settings (parameters tested summarized in 
Supplementary Table S4, results summarized in Supplementary Table S5). Performance of classifiers were quan-
tified using area under the receiver operating characteristic curve (ROC AUC) and area under the precision 
recall curves (PRC AUC), where a perfect predictor has an AUC score of 1. Among the tested algorithms using 
the parameter settings obtained via grid search, neural networks, random forest, and SVM significantly outper-
formed the other three algorithms (Fig. 2d, Supplementary Fig. S2b). For example, in CD14+ monocytes, neural 
network models had an AUC score of 0.90 in comparison to naïve Bayes and QDA models scoring 0.84 and 0.86 
respectively. Neural network models scored the best across all five cell types closely followed by SVM and random 
forest models. Based on their overall performance, inherent flexibility with respect to the number of classes used 
in the model, and shorter run time (Supplementary Table S5), neural networks were implemented in the PEAS 
framework.

Data integration improves enhancer prediction models.  We studied the impact of integrating diverse 
data features for enhancer predictions by building and evaluating neural network models using (i) DNA sequence 
features, (ii) TF motif occurrence features, (iii) ATAC-seq peak features, (iv) ATAC-seq insert/cut features and 
(v) all features combined (summarized in Table 1). We found that integrating diverse data features improved 
the predictive power of neural network models (Supplementary Fig. S4 for ROCs, Supplementary Fig. S5 for 
precision-recall curves). For example, in CD4+ T cells, models based on a single type of data resulted in ROC 
AUC scores ranging from 0.60 to 0.86, whereas the model that integrates all data features had a score of 0.90 
(Supplementary Fig. S4). Similarly, combined models for this cell type had a PRC AUC of 0.93, whereas models 
based on single feature type had scores ranging from 0.65 to 0.90 (Fig. S5). We also observed that ATAC-seq 

Feature Type Feature Label (24)

ATAC-Seq Peak Driven (n = 5)

Peak score (MACS)

Peak length (MACS)

Fold change

Summit pileup

Summit center distance

ATAC-seq Insert/Cut Driven (n = 10)

# of all inserts

# of inserts (0,50]

# of inserts (50, 150]

# of inserts (150, 300]

# of inserts (300, 500]

# of inserts (500,)

Insert size (mean)

Long/short insert ratio

# of cuts within peak

# of overrepresented cuts

Sequence Driven (n = 3)

Conservation (mean)

GC% (HOMER)

CpG% (HOMER)

Motif Driven (n = 4)

# of CTCF motifs

% of known motifs present

% of denovo motifs present

Genomic Location Driven (n = 3)

Annotation (HOMER)

Distance to TSS

Gene type (HOMER)

Table 1.  Data features extracted by PEAS from ATAC-seq bam files and genomic sequence categorized by 
feature type. For numeric ranges, inclusive and exclusive values are denoted by square brackets and parentheses 
respectively.

https://github.com/UcarLab/PEAS
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related features significantly contributed to these models, where in all but CD14+ models, top features were 
ATAC-seq peak- or insert-related (Supplementary Figs S4 and S5).

ChromHMM-based annotations are effective for enhancer predictions.  One challenge in build-
ing an enhancer prediction model is labeling enhancers, where possible annotations are incomplete and might 
include false positives. Different studies have used different annotations in model training including p300 binding 
sites13,15,17,18,20,22–26 and FANTOM536,37 enhancers19 (Supplementary Table S1). To quantify the impact of differ-
ent enhancer annotations in predictive models, we studied three alternative enhancer definitions in three cell 
types (GM12878, CD4+ T cells, CD14+ monocytes): enhancers defined by CAGE tags from the FANTOM5 
project36,37, p300 binding sites in the cognate cell type, and ChromHMM enhancer states7. We first observed 

Figure 3.  Comparisons of alternative enhancer definitions. (a) Number of OCRs mapping to enhancers based 
on ChromHMM, FANTOM, and p300 binding definitions. (b) Overlap of ChromHMM, FANTOM, and p300 
enhancer definitions in three cell lines. All three definitions were available for GM18278, CD4+ T, whereas 
p300 binding data was not available in CD14+ cells. (c) Receiver Operating Characteristic curves (ROC) for 
enhancer predictions based on ChromHMM, FANTOM, p300, and common enhancer definitions using 5-fold 
cross validation. AUC stands for area under the curve (AUC) values for ROCs. Common enhancers are the 
enhancers annotated by all available definitions in the cognate cell type. Negative examples (“other” OCRs) 
were defined as OCRs that map to “other” ChromHMM states (Methods). (d) ROC curves for cross cell type 
predictions via models built using different enhancer definitions in GM12878 cells. Note that, models based 
on ChromHMM are more effective for cross cell type predictions compared to models based on common 
enhancers or other definitions. AUC stands for area under the curve (AUC) values for ROCs, ACC stands for 
accuracy.
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that among these definitions, ChromHMM-defined enhancers are the most comprehensive. For example, in 
GM12878, out of 101,264 non-promoter OCRs, 38,801 were labeled as enhancers using ChromHMM, whereas 
only 5,279 and 3,773 were annotated as enhancers using FANTOM5 and p300 binding respectively (Fig. 3a). 
Notably, we observed significant overlap between alternative enhancer definitions, where ChromHMM-defined 
enhancers encompassed most p300 binding or FANTOM5-defined enhancers in all three cell types (Fig. 3b). 
However, only a small portion of enhancer regions were annotated by all three alternative definitions: 995 in 
GM12878 and 2,340 in CD4+ T cells. To understand how these alternative definitions affect machine-learning 
models, we built neural network models using 5-fold cross-validation in these three cell types where in each 

Figure 4.  Enhancer predictions across cell types. (a) Barplots of Receiver Operating Characteristic (ROC) 
area under the curve (AUC) values for (i) cross cell-type predictions using models trained using data from a 
cell type other than the one being evaluated (blue, yellow, green, red, dark blue bars), (ii) a combined model 
trained on all other cell types excluding the evaluated cell type (gray bars), and (iii) 5-fold cross validation 
within the cell being under evaluation for comparison purposes (white bars). Combined models effectively 
predicted enhancers across 5 cell types, typically outperforming the models built from a single cell type. (b) 
Overlap of PEAS enhancer predictions with ChromHMM, and FANTOM enhancer definitions (top left) and 
with ChromHMM, and p300 binding enhancer definitions (bottom right) in CD4+ T cells. PEAS predictions 
significantly overlap with all three definitions. (c) Schema of our analyses to predict enhancers in EndoC-βH1 
cell line using combined models by integrating data from GM12878, PBMC, CD14+, CD4+ T, and islet cells. 
(d) Precision Recall (PRC) curves for EndoC-βH1 enhancer predictions using (i) EndoC-βH1 data with 5-fold 
cross validation (blue) (ii) combined model (orange) and (iii) models trained only from an islet sample since 
that is the most relevant cell type among the five studied (red). Note that combined models perform similarly to 
islet-specific models. (e) Example region around IRX5 and CRNDE genes that show PEAS enhancer predictions 
based on combined models (marked with yellow bars). Note that the three PEAS predicted enhancers in this 
region are not enhancers in the cell types used for model training, however they are enhancers in EndoC-βH1. 
ChromHMM states in EndoC-βH1 are not used in model building, however shown in this figure to evaluate 
PEAS predictions. Shown ChromHMM states include enhancers (Yellow), promoters (Red), transcribed regions 
(Green), Insulators (Blue), Polycomb Repressed (Dark Gray), and Other regions (Light Gray).
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model using different enhancer definitions for class training and testing. We noted that 5-fold cross-validation 
performances of these models depend on i) the size of the enhancer examples in the data, and ii) how negative 
examples (i.e., non-enhancer sites) are selected. When the same negative set is used (i.e., “other” annotations 
from ChromHMM annotations), more restrictive enhancer definitions lead to higher ROC AUC values. For 
example, in CD4+ T cells, models trained on enhancers common to ChromHMM, FANTOM, and p300 had 0.97 
AUC compared to 0.90, 0.95, and 0.87 AUC scores using ChromHMM, FANTOM5, and p300 binding enhanc-
ers respectively (Fig. 3c). However, the assessment of these restrictive models was based on a smaller number 
of enhancer predictions compared to the models built from ChromHMM enhancers, therefore these results do 
not imply that they will outperform enhancer predictions in independent datasets (Supplementary Fig. S6a). 
Indeed, our analyses showed that when negative sets are differently selected for these models (i.e., OCRs that 
are neither promoters nor enhancers with respect to the cognate enhancer definition), the performance drops 
(Supplementary Fig. S6b). To study how models built from different enhancer definitions would perform in a 
different cell type, we predicted enhancers in EndoC using these 4 different models (Fig. 3d). The performance 
of models built from more restrictive enhancer sets were lower in this analysis. FANTOM and ChromHMM 
performed the best in terms of ROC AUC values (ROC AUC = 0.78 for both definitions) while models based on 
ChromHMM enhancers had higher accuracy using the same probability threshold used for 5-fold cross valida-
tion (p > 0.5). These analyses suggest that among the alternative enhancer definitions, ChromHMM definitions 
are the most effective while predicting enhancers in independent datasets despite their lower cross-validation 
performance due to the larger size of enhancer examples predicted in these models. Furthermore, ChromHMM 
identifies a comprehensive list of enhancers in a given cell type, whereas FANTOM5 and p300 binding sites 
describe smaller sets of enhancers. Based on these, we used ChromHMM enhancers in training PEAS models.

PEAS models can predict enhancers across cell types.  We studied to what extent data features that 
describe enhancers are conserved across cell types by building PEAS models in one cell type and predicting 
enhancers in another cell type (See Supplementary Fig. S7a for parameter configurations). Although, PEAS mod-
els were more predictive when trained and tested within a cell type using cross validation (white bars in Fig. 4a), 
we noted that these models can still effectively predict enhancers across cell types. For example, ROC AUC was 
0.90 for training and testing in CD4+ T cells, whereas predictions in CD4+ T cells using models built in other 
cell types ranged from 0.83 to 0.88 (Fig. 4a). Interestingly, combined models (i.e., models built using all other 
cell types except the one tested) outperformed most cross-cell-type predictions. These results suggest that if ref-
erence annotations do not exist for a cell type, cross-cell-type predictions, particularly the models generated by 
integrating data from multiple cell types (i.e., combined models), can be effective in predicting enhancers in the 
un-annotated cell type. To further validate PEAS models trained on ChromHMM enhancer definitions, we com-
pared PEAS enhancers with ChromHMM states, FANTOM5 enhancers and p300 binding sites. We observed that 
PEAS was effective in not only recapitulating ChromHMM defined enhancers, but also in identifying enhancers 
based on p300 binding and FANTOM5 database (Fig. 4b, Supplementary Fig. S8).

PEAS can predict enhancers without reference annotations.  While PEAS effectively predicted 
enhancers in cells with reference ChromHMM states, reference annotations do not exist for many cell/tissue 
types or under pathological states. For example, we do not have references for cell types that are difficult to 
acquire in large numbers, such as terminally differentiated CD8+ T cells that are critical in studying immunode-
ficiency. For predictions in such cases, we built a combined PEAS model (Supplementary Fig. S7b) by integrating 
ATAC-seq data from an islet sample (Islet16), GM12878, CD4+ T cells, monocytes, PBMCs (Fig. 4c) and tested 
the efficacy of this combined model for predicting enhancers in EndoC-βH1 beta cells. EndoC-βH1 cells secrete 
insulin when stimulated by glucose and are a useful cellular model to study beta cell (dys)function in T2D45. Due 
to their clinical significance, we generated ChIP-seq data for major histone modification marks and ATAC-seq 
data in EndoC-βH1 cells46 (manuscript under revision). Here, we tested whether PEAS can predict enhancers in 
EndoC-βH1 by learning the discriminative patterns in other annotated cell types. The combined model predicted 
EndoC-βH1 enhancers with high efficacy (Precision-Recall (PRC) AUC = 0.83, ROC AUC = 0.79) (Fig. 4d, 
Supplementary Fig. S9a), comparable to the model built only from the islet data, the most relevant cell type 
among the ones studied here (PRC AUC = 0.82, ROC AUC = 0.78). Note that in these models ChromHMM 
annotations in EndoC-βH1 were only used to assess the predictive power of combined and individual-cell type 
based models and not used for model training. For comparison purposes, we also built a model using annota-
tions in EndoC-βH1 via 5-fold cross validation, which as expected, performed better than all other models (PRC 
AUC = 0.88, ROC AUC = 0.84). Furthermore, we observed that combined models are still effective in predict-
ing EndoC enhancers even when we exclude islet cells from model training, suggesting that the performance 
of these models are not driven by the most relevant cell type (i.e., islets) (PRC AUC = 0.82, ROC AUC = 0.78, 
Supplementary Fig. S9b). Combined together, these analyses suggest that combined PEAS models are effective 
in predicting enhancers in cell types that miss reference annotations as long as they are profiled using ATAC-seq 
technology. Such models work on the premise that enhancer features used in PEAS are conserved across cell types 
and samples, even if the locations of enhancers are not. Figure 4e depicts three EndoC-specific enhancers that are 
captured using combined models, despite the fact that these regions were not annotated as enhancers in any cell 
types used in model training.

To further study whether this combined model can be applied to a wide range of cell types, we evaluated this 
model for predicting enhancers from ATAC-seq data generated in naïve CD8+ T cells32 and two ENCODE5 cell 
lines K562 and MCF7 (Supplementary Fig. S10). We observed that similar to EndoC results, combined mod-
els are effective in predicting enhancers in these three cell types, where ROC AUC values are 0.82, 0.79, 0.79 
respectively. Furthermore, PEAS enhancers in these cell types showed significant overlap with enhancers defined 
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by ChromHMM and FANTOM5 project (Fisher’s exact test p-values ranging from 5.87e-133 to <5e-324 for 
ChromHMM enhancers and from 2.91e-9 to 2.18e-255 for FANTOM enhancers in all three cell types).

Number of Tn5 cleavage fragments is the most predictive feature.  To understand the importance 
of features used in PEAS models first we evaluated each feature’s importance in combined models using 5-fold 
cross validation (Methods). First, we observed that ‘# all inserts’ (i.e., the number of paired-end TN5 cleavage 
fragments spanning the OCR) and other features related to the ATAC-seq signal are the most predictive for 

Figure 5.  Enhancer predictions in individuals’ islets. (a) Schema of our framework for predicting enhancers 
from islet ATAC-seq profiles of 19 individuals. (b) Distribution of Receiver operating characteristic (ROC) 
areas under the curve (AUC) values, precision recall (PRC) AUC values, and accuracies (enhancer probability 
> 0.5) for PEAS enhancer predictions in 19 individuals. Note that these models are consistently predictive 
across 19 individuals. (c) PEAS enhancer probability distributions for OCRs containing rs11100782 (left 
panel) and rs7320023 (right panel) stratified based on individuals’ genotypes, where genotypes are ordered 
with respect to the allelic impact on chromatin accessibility. Note that PEAS enhancer probabilities correlate 
with genotypes for these two loci. (d) Left panel: Genome browser session for the islet caQTL OCR that 
contain rs11100782 variant. This OCR is a ChromHMM enhancer and predictions at the individual level 
using PEAS are depicted under chromatin accessibility profile for each individual. If a peak is not called for an 
individual at this locus, PEAS do not provide predictions (hence no bars and probabilities). Individual samples 
are ordered with respect to genotypes, starting from ‘AA’ genotype that is associated with open chromatin. 
Right panel: Genome browser session for an islet caQTL OCR that contain rs7320023 variant to summarize 
PEAS predictions at the individual level. Note that this region has not been annotated as an enhancer using 
ChromHMM. Islet samples are sorted based on genotypes starting from ‘GG’ genotype associated with open 
chromatin. (e) Distribution of point biserial correlations between PEAS probabilities and genotypes (e.g., in 
Fig. 5c) for all studied caQTLs and random OCRs that harbor variants. P-value was calculated using the Mann-
whitney U test. Note that association between genotype and PEAS probabilities are specific to islet caQTLs. (f) 
Distribution of ChromHMM annotations and PEAS annotations for T2D-disease state associated OCRs. Note 
that PEAS predictions are at the individual level, therefore a genomic region is considered multiple times across 
individuals. Using enhancer predictions at the individual level improved the annotations for these disease-
associated loci.
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discriminating enhancers from other regulatory elements (Supplementary Fig. S11a). ‘Known Motif%’ (i.e., the 
percent of PWMs that match to this OCR among all PWMs) is also a predictive feature in this model, potentially 
related to the fact that enhancers are typically bound by multiple transcription factors47. Finally, we calculated 
the importance of these features for predicting enhancers in cell types that are not used in model training (i.e., 
EndoC, naïve CD8+ T cells, K562, and MCF7) and observed that predictive features are conserved across cell 
types.

To obtain a ranking of features in combined models, we employed backward elimination, a greedy search algo-
rithm (Methods). Using 5-fold cross validation, the most predictive feature (i.e., the last feature remaining in the 
model) was ‘# of all inserts’ with an ROC AUC of 0.731 (Supplementary Fig. S11b), in agreement with the single 
feature importance assessment. ‘# of CTCF Motifs’ also improved the predictions, increasing the model ROC 
AUC values from 0.731 to 0.789, potentially discriminating insulator regions (bound by CTCF) from enhancers. 
Inclusion of peak related features (e.g., ‘#Summit Pileup’, ‘Peak Score’, and ‘Fold Change’) further improved the 
model performance up to 0.828 ROC AUC, suggesting that different aspects of the ATAC-seq signal contribute 
to predictions.

In summary, we observed that certain features contribute more significantly to these models and feature 
importance scores are preserved across predictions in different cell types. This suggests that although enhancers 
are located in different loci in different cell types, their data features are conserved. We noted that 8 of the 24 
features, namely ‘# of all inserts’, ‘# of CTCF motifs’, ‘Fold Change’, ‘Peak Score’, ‘Summit Pileup’, ‘Distance to TSS’, 
‘GC%’, and ‘# of all inserts (0,50]’ are the most predictive and achieve good performance (ROC AUC 0.846 vs. 
0.864 when all features are used). However, the inclusion of all 24 features did not negatively impact our models, 
therefore we decided to keep all 24 features in model training.

PEAS can predict enhancers from individuals’ islet ATAC-seq samples.  Reference epigenomes (i.e., 
ChromHMM states) are typically derived from one or two healthy individuals; hence they miss individual-specific 
variation in regulatory elements attributable to genetic and/or phenotypic differences (e.g., enhancers in T2D 
islets). PEAS provides an opportunity to refine enhancer annotations at the individual level. To test this, we built 
islet PEAS models and predicted enhancers from 19 individuals (Fig. 5a, Supplementary Fig. S7c, Methods). 
These models were highly effective in capturing ChromHMM-defined enhancers in islets based on three meas-
ures: ROC AUC, PRC AUC, and accuracy (enhancer probability > 0.5) (Fig. 5b). These predictions at the individ-
ual level uncovered variability in enhancer activity. To understand whether this variability can be linked to genetic 
or environmental factors, we predicted enhancers at the individual level for i) OCRs containing chromatin acces-
sibility quantitative trait locus (caQTLs) (n = 2015) and ii) OCRs associated with the T2D-disease state (n = 1515) 
from the same cohort, respectively. Importantly, these OCRs were excluded from model training for an unbiased 
assessment of our predictions for these regions (Methods).

Islet caQTLs were obtained by integrating ATAC-seq profiles of these individuals with their genotypes to 
uncover sequence variants that modulate islet regulatory element use33. Interestingly, PEAS-predicted enhancers 
overlapped a significant portion (78%, 1575 out of 2015 tested) of islet caQTLs, suggesting that PEAS can be 
effective in uncovering and studying regulatory element variation stemming from genetic differences between 
individuals. To systematically test whether PEAS predictions can refine individual-level variation at islet OCRs, 
we studied the association between PEAS enhancer probabilities (i.e., probability of an OCR to be an enhancer) 
and the genotype of the caQTL variant. For islet caQTL variants, we expect a positive correlation between PEAS 
probabilities for this locus and the allele associated with chromatin accessibility. For example, rs11100782 var-
iant is an islet caQTL for which the ‘A’ allele is associated with open chromatin. For this variant, we observed a 
positive association between PEAS probabilities and genotypes containing the chromatin-opening allele (Fig. 5c 
left panel, Point-biserial correlation coefficient (PCC): 0.673). Similarly, for another variant that is an islet caQTL 
(rs7320023), we observed a positive association between PEAS probabilities and genotypes containing the 
chromatin-opening allele (Fig. 5c right panel, PCC:0.15). Indeed, when we visualize islet ATAC-seq profiles for 
these two loci in 19 individuals, we noted that PEAS could effectively refine enhancer definitions at the individ-
ual level (Fig. 5d). Interestingly, the OCR that contained rs11100782 overlapped a region that is active across 
many individuals and that mapped to a ChromHMM-defined enhancer. On the other hand, the OCR containing 
rs7320023 was not annotated as a ChromHMM enhancer and was only active in one individual with genotype 
‘GG’ at probability cut-off 0.5. We noted an overall positive trend for all caQTL-containing OCRs for which 
we have PEAS predictions and for which we can appropriately calculate correlations (n = 828, see Methods for 
details) (Fig. 5e). Importantly, randomly selected OCRs that contain variants without an impact on chromatin 
accessibility (i.e., non-caQTLs) did not exhibit positive associations (Fig. 5e, Methods), confirming PEAS’s ability 
to detect individual-specific enhancers affected by genetic variation.

Finally, we studied whether PEAS can be effective in detecting regulatory elements associated with T2D, 
hence missed in references driven from healthy individuals. The majority (>60%) of OCRs that change accessi-
bility with T2D disease state are in noncoding regions. Furthermore, a significant portion of these (~25%) were 
either annotated as ‘quiescent’ or ‘repressed’ using reference ChromHMM states33. We hypothesized that some of 
these are enhancers that are not properly annotated in reference epigenome sets and PEAS predictions can help 
annotate these T2D-disease state associated OCRs. For this, we predicted individual-specific enhancers at T2D 
disease state associated OCRs (n = 15,494, note that the same OCR is counted multiple times for different indi-
viduals in this analyses). Based on ChromHMM annotations, there were 6,065 noncoding OCRs in 19 islets that 
were associated with T2D and not annotated as an enhancer. Incorporating PEAS enhancer predictions reduced 
this number to 2,783 (Fig. 5f), indicating that pathology-associated enhancers can be further annotated using 
individual-level predictions. Together, these analyses demonstrate that PEAS predictions from islet epigenomes 
can refine individual-level variation at enhancer usage including the ones modulated by genetic and phenotypic 
differences.
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Discussion
Motivated by the growing class of ‘enhanceropathies’34 and advances in chromatin accessibility profiling tech-
niques, we built a machine-learning framework (PEAS) that predicts enhancers using a single genomic measure-
ment (i.e., ATAC-seq) that can be obtained from small cell numbers to infer and study enhancers from clinical 
samples. After careful examination of six different algorithms and three reference enhancer annotations, neu-
ral network models and ChromHMM-enhancers were used in the PEAS framework. PEAS extracts and inte-
grates data features that describe (1) ATAC-seq peak and read distribution characteristics; (2) specifics of DNA 
sequence (e.g., GC content); and (3) TF motif occurrences. We showed the efficacy of this framework by stud-
ying and predicting enhancers from 19 individuals’ islet ATAC-seq profiles. These predictions not only refined 
individual-level variation in previously annotated enhancer regions (Fig. 5d left panel), but they also uncovered 
putative enhancers that are missed in reference annotations (Fig. 5d right panel). These results reinforce the 
importance of moving the field from “reference” epigenomes to “personalized” epigenomes by studying genomic 
patterns obtained in health and disease and building predictive models that can take advantage of these personal 
epigenomes.

Despite the large consortium efforts, many primary human cell types, especially the ones that are not easy to 
obtain in large numbers, have yet to be profiled and annotated. Additionally, reference annotations were mostly 
obtained from healthy individuals; hence we do not know the regulatory element landscape in pathologic condi-
tions. To show that PEAS models can be effective in the absence of reference ChromHMM states, we integrated 
data from five cell types and used this model to predict enhancers in four other cell types (e.g., EndoC-βH1 beta 
cell line). This combined model was effective in predicting enhancers in other cell types, suggesting that although 
enhancers are cell-type-specific, the features that describe them are conserved across different cell types, which is 
also confirmed by feature importance analyses. To enable studying enhancers in new cell types or under different 
conditions, PEAS is designed to predict enhancers in any cell type profiled with the ATAC-seq technology, even in 
the absence of ChromHMM (or any other) annotations. For cell types that can only be acquired in small numbers 
due to their scarcity or high costs associated with collecting millions of cells, PEAS predictions from combined 
models can effectively predict enhancers. For cell types that are previously profiled, PEAS models can still be use-
ful to refine individual-level variability in enhancer usage and associate this variability to genetics or pathologic 
state. To make the PEAS framework easy to use, we developed a user interface that can be found at https://github.
com/UcarLab/PEAS.

Our study is a proof of concept for using ATAC-seq samples to predict enhancers in clinical samples. We 
showed that by predicting enhancers from individuals, we can uncover variability stemming from genetic differ-
ences and better annotate T2D disease state-associated OCRs. In the near future, we will investigate whether the 
efficacy of these models can be further improved by building convolutional neural networks and by integrating 
other sources of information that can be obtained from clinical samples (e.g., genotypes). In addition, we will 
apply PEAS to predict enhancers in other clinical conditions by taking advantage of the growing number of 
ATAC-seq samples generated to study complex phenotypes, including our work to study immunodeficiency in 
the elderly population32.

Methods
ATAC-seq datasets and pre-processing.  We used previously published ATAC-seq libraries from 
GM12878 human lymphoblastoid cell line, purified CD4+ T cells28 (GEO: GSE47753), MCF7 human breast 
cancer cell line39 (GEO: GSE97583), and K562 leukemia cell line38 (GEO: GSE101512). ATAC-seq profiles for 
human pancreatic islets, PBMCs, CD14+ monocytes, and naïve CD8+ T cells were obtained from our previ-
ous studies32,33. ATAC-seq data for EndoC-βH1 beta cell line data has been recently generated46 (manuscript 
under revision). For in-house ATAC-seq data, fifty thousand unfixed nuclei were transposed using Tn5 (Illumina, 
Nextera DNA sample prep kit) for 30 min at 37 °C and the resulting library fragments were purified using Qiagen 
MinElute kit (Qiagen). Libraries were generated using 10–12 cycles of PCR amplification and purified using a 
Qiagen PCR cleanup kit (Qiagen). Libraries were sequenced on an Illumina HiSeq. 2500 with a minimum read 
length of 2 × 75 basepairs (bp) to a minimum depth of 30 million reads per sample. ATAC-seq sequences were 
quality-filtered using trimmomatic48 and trimmed reads were mapped to the GRCh37 (hg19) human reference 
sequence using BWA-MEM49 using default parameters. Duplicate reads were eliminated to avoid potential PCR 
amplification artifacts. After alignment, technical replicates were merged for further analyses.

Feature extraction.  PEAS extracts features from ATAC-seq data using a multi-step process. First, ATAC-seq 
peaks (OCRs) were called using MACS240 (version 2.1, BAMPE option) on nucleosome free ATAC-seq reads 
(insert size <= 150 bp). Peaks overlapping blacklist regions based on ENCODE mappability criteria were 
removed from the final peak set. For each peak, peak-related features (n = 5) were obtained from MACS2 output 
(peak score, peak length, fold change, summit pileup, and summit center distance). Insert/cut related features 
(n = 10) were then extracted by analyzing all ATAC-seq reads overlapping each peak. Read pileup information 
for each peak was quantified using both inserts (# of all inserts) and cut sites (cut count). Insert features related to 
the insert size distribution were quantified by the mean insert size, and the ratio of the number of inserts above 
and below 150 bp. In addition, different insert size distributions were quantified at different intervals to capture 
features related to nucleosome or DNA-binding protein occupancy: short inserts (0,50 bp] that has been shown 
to relate to protein binding and enhancer activity50, non-nucleosome occupied (50,150 bp], mono-nucleosome 
occupied (150,300 bp], di-nucleosome occupied (300,500 bp], and loci occupied by three or more nucleosomes 
(> = 500 bp). Finally, we studied whether the cuts within a peak are uniformly distributed across the peak by 
counting the number of times observed cuts exceeded the number of expected cuts (# of overrepresented cuts) 
for every 5 bp window spanning the peak. Significance for each window was calculated using one-tailed binomial 
test (p-value < 0.0005). Sequence related features (n = 3) include mean conservation score, GC% and CpG%. 

https://github.com/UcarLab/PEAS
https://github.com/UcarLab/PEAS
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Mean conservation scores were obtained by overlapping each peak with the phastcons46way51 track from UCSC 
genome browser52. GC% and CpG% content were obtained from HOMER annotations53. HOMER53 annotations 
were also used to identify genomic location related features (n = 3), identifying distance to TSS, gene type, and 
annotation (i.e., promoter, exon, intron, etc.). Finally, HOMER53 was employed to identify motif related features 
(n = 3). We noted that using independent PWMs and their motif occurrence (n = 1604), does not outperform 
merging all PWM occurrences (i.e., the percentage of PWMs with a motif in the OCR) (Supplementary Fig. S12 
summarize results to compare models built using 24 vs. 1625 features). We therefore used the summary feature 
(i.e., percentage of PWM with a motif within the peak) in PEAS models. Motif counts were reduced to binary 
arrays (present or not-present) and the number of present motifs was divided by the total number of motifs 
(n = 1604). The same method was employed on denovo motifs called by HOMER53. As a final motif feature, 
CTCF motifs were identified using all CTCF associated PWMs and the total counts were reported as a single 
feature. In total, 24 features were extracted within the PEAS framework as summarized in Table 1.

Feature comparisons.  Comparisons between data features (Fig. 2c) were obtained by calculating the pair-
wise log2 ratio of each feature between promoters, enhancers, and other regulatory elements. For each class pair, 
the average of each feature was obtained and the ratio between each feature was calculated and reported.

Assigning class labels to ChromHMM states.  ATAC-seq peaks were annotated using ChromHMM7 
states in the corresponding cell type. To obtain consistent labels for model training across cell types, we used 
ChromHMM7 to segment the genome into 15 states using H3K4me1, H3K4me3, H3K9me3, H3K27ac, 
H3K27me3, and CTCF (when available) ChIP-seq datasets for the 5 cell types studied here: CD4+ T54,55, 
GM128785, islets41, PBMCs55, and CD14+ monocytes55 (Table S6). To obtain harmonized annotations in cell 
types for which we have CTCF data (i.e., CD4+ T, GM12878, and islets), we first clustered pairwise correlations 
of 15 state emission probabilities. Accordingly, ten clusters were identified and assigned to 7 different functional 
annotations (class labels) after studying their histone mark combinations and performing comparisons with pre-
viously called ENCODE5 and Roadmap6 states. Finally, we identified states with the highest CTCF emission score 
in each cell type and mark these as the 8th functional state (i.e., insulators). To obtain harmonized annotations for 
monocytes and PBMCs, which lack CTCF ChIP-seq data and hence the insulator state, we repeated the clustering 
of emission probabilities including these cells and labeled 7 functional states that are harmonized across these 
cells. States that did not have a discriminative emission probability distribution were annotated as ‘ambiguous 
states’ and were excluded from our analyses and annotations. EndoC ChromHMM states46 (manuscript under 
revision) were obtained from in-house ChIP-seq data. ChromHMM 15 state models for K562 and naive CD8+ T 
cells were obtained from Roadmap6. For MCF7, we used ChromHMM states available from our previous study41. 
ChromHMM states that were not called by our independent ChromHMM analyses were relabeled to maintain 
same annotation labels throughout the study. ATAC-seq peaks that map to a single ChromHMM annotation 
were labeled accordingly, assigning the annotation to the peak. Peaks overlapping multiple functional states were 
resolved by assigning the functional label that covers the most number of base pairs (bps) in the peak. To better 
assess enhancer models and to remove classes with unstable ground truths, we excluded genic enhancer class 
labels in addition to ambiguous states from model training and testing. Genic enhancers were excluded since their 
histone mark definitions were similar to transcribed regions of the genome, which are labeled as non-enhancer 
in our models.

Comparison of classification algorithms.  We compared binary classification performance (enhancer vs. 
‘other’) of six different algorithms using 24 features for the following algorithms: neural networks, Support Vector 
Machines (SVMs)43,44, random forest, K-Nearest Neighbor (K-NN), Naïve Bayes, and Quadratic Discriminant 
Analysis (QDA). Hyper-parameter tuning was applied using grid search for each algorithm as summarized in 
Supplementary Fig. S3. Model performance was measured using average accuracy scores in 5-fold cross valida-
tion for each of the 5 cell types studied (CD4+ T cells, GM12878 cells, islets, PBMCs, and monocytes). In the case 
of islets, where multiple samples are available, Islet 16 was selected for parameter tuning.

FANTOM5 & p300 comparisons.  To compare ChromHMM with FANTOM5 and p300 definitions, 
FANTOM5 enhancers were obtained from http://fantom.gsc.ricken.jp36,37, taking the union of enhancers for 
GM18278(CNhs12331, CNhs12332, and CNhs12333) CD4+ T (CNhs10853, CNhs11955, and CNhs11998), 
CD14+ (CNhs10852, CNhs11954, and CNhs11997), CD8+ T (CNhs11999, CNhs11956, CNhs10854), K562 
(CNhs12334, CNhs12335, CNhs12336), and MCF7 (CNhs11943) where enhancers were identified if their tran-
scripts per million (TPM) values were greater than 0. Previously called p300 binding sites were obtained from 
public data for GM128785,56 (GSM803387) and CD4+ T cells57 (GSM393946). The union of p300 binding sites 
replicates was used for GM12878. Models for FANTOM5, p300, and common enhancers were trained using 
neural networks with the same parameter settings used for ChromHMM models for a fair comparison. For each 
model, enhancers were defined with their respective definitions, while ‘other’ regulatory elements were defined 
based on ChromHMM annotations for each model.

Cross cell type model training and testing.  To test the performance of enhancer predictors across 
cell types, cross cell-type models were trained using the best parameters identified in hyper-parameter tuning 
(Supplementary Fig. S7a, Supplementary Table S5) for neural networks. Models were trained using all “enhancer” 
and “other” OCRs from one cell type and tested to predict all “enhancer” and “other” OCRs in the second cell 
type.

http://fantom.gsc.ricken.jp
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Combined model training and testing.  To overcome overfitting to a single cell-type and to toler-
ate differences in read depth, we trained a model to discriminate “enhancer” and “other” OCRs in all five cell 
types, using the hyper-parameters that have the best average performance across all cell types (Supplementary 
Fig. S7b, Supplementary Table S5). Classification performance of the combined model was tested to discriminate 
“enhancer” and “other” OCRs in EndoC cells. The combined model was further evaluated in naïve CD8+ T cells 
and ENCODE5 cell lines K562 and MCF7. Predictions made by PEAS combined model were compared against 
ChromHMM and FANTOM enhancer annotations to measure the overlap between definitions.

Individual feature performance.  Individual feature performances were obtained by training combined 
models for each feature. For each model, a single feature is selected and the remaining feature values are set to 
zero in order to maintain the same neural network architecture across all models. To evaluate the performance 
of each model, 5-fold cross validation was performed obtaining an ROC AUC value for each feature (n = 24). 
In addition, these combined models were tested on EndoC, naïve CD8+, K562, and MCF7 cells to study the 
robustness of feature importance scores for predicting enhancers across different cell types. Combined with cross 
validation results, each feature was evaluated five times (5-fold cross validation, EndoC, naïve CD8+, K562, and 
MCF7) resulting in a total of 120 model evaluations summarized in Supplementary Fig. S11a.

Backward elimination.  Backward elimination is a greedy algorithm that ranks features from least impor-
tant to most important by removing features one by one over the course of multiple rounds until all features are 
removed. At each round only one feature is eliminated, i.e., the feature that has the least negative impact on the 
model’s performance. The order for which features are removed from these models is used as a feature ranking, 
where features removed first are the least important ones; whereas features removed last are the most important 
ones. One caveat is that backward elimination is a heuristic method and therefore feature rankings obtained from 
this method may miss more optimal feature subgroups. Models were evaluated using 5-fold cross validation ROC 
AUC values, merging probabilities from each fold to produce a single ROC curve.

Individual-specific enhancer predictions in islets.  For evaluating islet specific models, we followed the 
procedure outlined in Supplementary Fig. S7c. First, “enhancer” and “other” annotated consensus peaks were 
obtained. Consensus peaks were defined as peaks found in at least 10 islet samples (>50% of the cohort) to 
take advantage of the fact that ATAC-seq peaks called over multiple individuals are more likely to be annotated 
consistently in reference ChromHMM states. To generate completely independent training and test sets, the con-
sensus peaks were divided into two by randomly selecting 50% of the total consensus peaks for training and 
the remainder for testing. A total of 19 models were trained (one per person) for evaluating individual-specific 
predictions. In each model training peaks from 18 individuals were used to train the model, and testing peaks 
from the remaining one individual was used to test the model. This cross-validation schema was used to ensure 
that test and training datasets are completely independent both in terms of individuals and genomic loci. In these 
models, to avoid class imbalance problems, the class label holding the majority number of peaks was randomly 
down-sampled to match the size of the minority class. ROC AUC, PRC AUC, and accuracy values (enhancer 
probability >0.5) were used to assess the performance of these models.

Enhancer predictions for disease or genetics associated OCRs.  For these predictions, a final islet 
model was trained using all “enhancer” and “other” consensus peaks (down-sampled for class imbalance) from 
all 19 islets after excluding the test set composed of: T2D-disease state associated OCRs, OCRs containing islet 
caQTLs, and randomly selected OCRs containing variants that are not caQTLs (n = 2046, equal to the number 
of caQTLs) for validation purposes. Among the islet caQTLs we previously described, in this study, we only used 
the ones that are within 100 bp of an islet OCR, resulting in 19,026 OCRs from 19 individuals that overlap 2,046 
significant caQTL SNPs. In order to be able to calculate correlations on categorical data (i.e., genotypes), we used 
point-biserial correlations, which is equivalent to Pearson correlation between genotypes and PEAS probabilities. 
For this we split genotypes into two categories (i) homozygous allele associated with chromatin closing, and (ii) 
heterozygous or homozygous allele associated with chromatin opening. For some islet caQTLs, genotypes did not 
stratify into these two categories. Furthermore, for a fair assessment, we excluded OCRs in individual samples for 
which we have no peak calls, resulting in correlation analyses for 828 caQTLs and 1,005 for non-caQTLs.

Availability of Data and Methods
PEAS software, its manual, datasets and other scripts are available on the Ucar Lab github page: https://github.
com/UcarLab/PEAS.
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