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SUMMARY

EndoC-bH1 is emerging as a critical human b cell
model to study the genetic and environmental etiol-
ogies of b cell (dys)function and diabetes. Compre-
hensive knowledge of its molecular landscape is
lacking, yet required, for effective use of this model.
Here, we report chromosomal (spectral karyotyping),
genetic (genotyping), epigenomic (ChIP-seq and
ATAC-seq), chromatin interaction (Hi-C and Pol2
ChIA-PET), and transcriptomic (RNA-seq and
miRNA-seq) maps of EndoC-bH1. Analyses of these
maps define known (e.g., PDX1 and ISL1) and
putative (e.g., PCSK1 and mir-375) b cell-specific
transcriptional cis-regulatory networks and identify
allelic effects on cis-regulatory element use. Impor-
tantly, comparison with maps generated in primary
human islets and/or b cells indicates preservation
of chromatin looping but also highlights chromo-
somal aberrations and fetal genomic signatures
in EndoC-bH1. Together, these maps, and a web
application we created for their exploration, provide
important tools for the design of experiments to
788 Cell Reports 26, 788–801, January 15, 2019 ª 2018 The Author(s
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probe and manipulate the genetic programs govern-
ing b cell identity and (dys)function in diabetes.
INTRODUCTION

Type 2 diabetes (T2D) is a complex disease characterized

by elevated blood glucose levels. Ultimately, T2D results when

pancreatic islets are unable to produce and secrete enough

insulin to compensate for insulin resistance in peripheral tissues

of the body. Individual genetic variation combined with dietary

and environmental stressors contribute to disease risk and path-

ogenesis (Lawlor et al., 2017b; Mohlke and Boehnke, 2015).

Genome-wide association studies have identified hundreds of

genetic loci associated with T2D and related traits, but extensive

work remains to identify the causal or functional variants, define

their target genes, and determine the roles of these genes in

b cell identity and function. Several studies have employed (epi)

genomic and transcriptomic profiling of human islets (van de

Bunt et al., 2015; Fadista et al., 2014; Varshney et al., 2017), pu-

rified b cells (Ackermann et al., 2016; Blodgett et al., 2015), and

single-cell populations (Lawlor et al., 2017a; Segerstolpe et al.,

2016; Xin et al., 2016) to identify changes in transcriptional regu-

lation and gene expression associated with b cell (dys)function

andT2D.However, themolecular andphysiologic consequences
).
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of these alterations and their causal link to b cell failure and T2D

pathogenesis remain largely undefined.

With the recent creation of an immortalized human b cell line,

EndoC-bH1 (Ravassard et al., 2011), islet researchers now

possess a tool to experimentally interrogate the molecular

mechanisms governing human b cell identity and (dys)function.

Since the initial report of their creation, studies utilizing EndoC-

bH1 to build insights into human b cell regulation and function

have grown steadily. These studies have demonstrated that the

physiology (e.g., response to glucose and insulin secretion) of

EndoC-bH1 cells resembles that of their primary islet counter-

parts (Andersson et al., 2015; Krizhanovskii et al., 2017; Oleson

et al., 2015; Teraoku and Lenzen, 2017) and that EndoC-bH1

can be used to identify novel genes involved in human insulin

secretion (Ndiaye et al., 2017). To motivate further functional

studies of human b cell molecular biology and guide the

development of cellular models (e.g., for small molecule

screening; Tsonkova et al., 2018), extensive characterization

of the EndoC-bH1 molecular landscape is needed. Here, we

completed multiomic profiling of EndoC-bH1 cells to exten-

sively map (1) chromosomal (spectral karyotyping), (2) 3D

epigenomic and/or chromatin looping (Hi-C [Belton et al.,

2012] and ChIA-PET [Li et al., 2014]), (3) histone modification

(ChIP-seq), (4) chromatin accessibility (ATAC-seq) (Buenrostro

et al., 2013), (5) genetic (dense genotyping and imputation),

and (6) transcriptomic (RNA-seq and miRNA-seq) signatures

of EndoC-bH1. With these high-resolution maps, we sought

to (1) identify gene regulatory programs central to human

b cell identity and function; (2) nominate putative functional

variants, putative molecular mechanisms, and target genes

underlying T2D, glucose, and insulin genetic associations;

and (3) build a publicly available web application for interactive,

intuitive exploration of these data. By comparing these multio-

mic profiles to those generated from human islets in this study

(Hi-C) and parallel studies (Khetan et al., 2018), we identified

shared and unique cis-regulatory elements (cis-REs) and gene

expression features. Taken together, these data, the insights

gleaned from their analysis, and the research support provided

by the web application serve as a high-content resource to

enable and guide future functional assessment and molecular

studies of b cell (dys)function.

RESULTS

Chromosomal and Genetic Heterogeneity in EndoC-bH1
To pursue a precise, comprehensive understanding of the

regulatory networks that govern EndoC-bH1 and/or islet b cell

identity and function, we first investigated the chromosomal

complement and stability of this cell line using spectral karyotyp-

ing (SKY) (Figure 1A). SKY analysis of 14 EndoC-bH1metaphase

spreads revealed that the number of chromosomeswas pseudo-

diploid (n = 46–48) (Figure S1). Nearly all metaphases (n = 13/14)

had a normal XY sex complement, with only one having a

missing Y chromosome, (metaphase 2; Table S1).

The most common autosomal aberrations in EndoC-bH1

included chromosome 20 gains (n = 11/14 metaphases)

and chromosome 10 losses (n = 10/14). Both of these were inde-

pendently detected as copy-number changes by comparative
genomic hybridization (CGH) analysis of the cell line (Univercell

Biosolutions, 2011). As summarized in Figure 1B and Table S1,

we also noted recurrent 10;17 (11/14 metaphases), 7;18 (10/14

metaphases), 3;17 (7/14 metaphases), and 3;21 (7/14 meta-

phases) chromosomal translocations as well as rarer events

including 12;22 (metaphase 1) and 3;5 (metaphase S2.5)

translocations and chromosome 12 losses (2/14 metaphases;

Table S1). Together, these results emphasize that although

EndoC-bH1 is largely diploid, vigilance and caution are war-

ranted when completing and interpreting studies of genes or

cis-REs on chromosomes 3, 7, 10, 17, 18, 20, and 21. We advise

investigators to specifically assess copy-number variation at loci

of interest, particularly in the regions identified herein as unstable

or variable among the population.

Delineation of T2D- and Related-Metabolic-Trait-
Associated GWAS SNP Genotypes in EndoC-bH1
Genome-wide association studies (GWASs) have identified

hundreds of index and linked SNPs representing putative causal

variants at hundreds of loci (Mahajan et al., 2018) associated

with T2D genetic risk and changes in associated quantitative

traits (e.g., fasting glucose, insulin, and proinsulin levels). We

completed dense genotyping and imputation of EndoC-bH1

(STARMethods) to determine the genotypes at�2.5 million sites

genome-wide (minor allele frequency, MAF >1%), including

disease-associated SNPs. First, we overlapped EndoC-bH1

genotypes with National Human Genome Research Institute/

European Bioinformatics Institute (NHGRI/EBI) GWAS catalog

(STAR Methods) single lead SNPs associated with glucose

levels (fasting glucose), insulin levels (fasting insulin and proinsu-

lin levels), type 1 diabetes (T1D), or T2D (MacArthur et al., 2017).

EndoC-bH1 exhibited homozygous non-risk genotypes at >50%

of these SNPs (Figure 1C; Table S2). For �20% of analyzed

GWAS loci, EndoC-bH1 possessed a heterozygous genotype,

including rs10830963 at the MTNR1B locus (chr11) and

rs11920090 at the SLC2A2 locus (chr3) (Figure 1D; Table S2).

Overlap with T2D-associated SNPs (n = 6,725 index and linked

[R2 >0.8] SNPs, representing 403 unique signals) reported in

the most recent meta-analysis (Mahajan et al., 2018) revealed

a similar genotype distribution, in which EndoC-bH1was hetero-

zygous for �30% (n = 119/403; Table S2) of T2D signals. These

unique signals represent attractive candidates for (epi)genome

editing to experimentally determine T2D-associated allelic

effects on cis-RE use in human b cells.

The EndoC-bH1 Epigenome and Transcriptome Largely
Resemble Those of Primary Islets but Retain Fetal or
Progenitor Islet Cell Signatures
To identify the genome-wide location of EndoC-bH1 cis-REs

(Figure 2A), we generated chromatin accessibility maps using

ATAC-seq and defined chromatin states (ChromHMM) by

completing and integrating ChIP-seq profiles for multiple histone

modifications. ATAC-seq identified 127,894 open chromatin

sites in EndoC-bH1. Qualitative comparison of EndoC-bH1

open chromatin and chromatin state maps to those in primary

human islets (Khetan et al., 2018; Varshney et al., 2017) revealed

that the genomic architecture for well-known islet-specific loci

such as PCSK1 (Figure 2A), PDX1, and NKX6-1 was remarkably
Cell Reports 26, 788–801, January 15, 2019 789
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Figure 1. Extensive Karyotyping and Geno-

typing of EndoC-bH1

(A) SKY of EndoC-bH1 for a representative

metaphase.

(B) Summary of the frequency of chromosomal

abnormalities across 14metaphases. Black boxes

indicate the presence of an event, while white

boxes indicate an absence.

(C) Bar plots highlighting the risk allele burden of

NHGRI-EBI GWAS Catalog diabetes-associated

GWAS loci in EndoC-bH1. T1D, type 1 diabetes;

T2D, type 2 diabetes. Glucose traits include fast-

ing plasma-glucose- and fasting glucose-related

traits interacting with BMI from the NHGRI-EBI

GWAS catalog (MacArthur et al., 2017). Insulin

traits include proinsulin and fasting insulin traits

interacting with BMI.

(D) Chromosome cartoons illustrating EndoC-bH1

genotypes and the reported locus at glucose trait

GWAS SNPs. Cases in which independent asso-

ciation signals mapped to the same locus are

indicated by the locus name followed by paren-

theses containing numbers of SNPs with each risk

genotype. Chromosomes 10 and 20 are marked

with asterisks to indicate that the previously

observed copy-number alterations (illustrated in

Figure 1B) may obfuscate interpretation of variant

genotypes on these chromosomes.

See also Figure S1 and Table S1.
similar in both, suggesting EndoC-bH1 cells effectively recapitu-

late b cell cis-regulatory landscapes.

We further compared each ATAC-seq dataset to those from

primary islets, sorted b or a cells, and other primary cell types,

including adipocyte, skeletal muscle, peripheral blood mononu-

clear cells (PBMCs), and CD4+ T cells (STARMethods). We iden-

tified a total of 269,701 open chromatin regions (OCRs) across

all cell types analyzed (STAR Methods). Among all studied

cell types, EndoC-bH1 ATAC-seq profiles most resembled

those of b cells (Figure 2B; Spearman R = 0.67), islets (Fig-

ure 2B; Spearman R = 0.64), and a cells (Figure 2B; Spearman

R = 0.62) (Spearman’s test p values < 2.225 e�308).

Next, we compared OCRs and chromatin states to determine

where and to what extent EndoC-bH1 chromatin states recapitu-

lated those of human islets, their constituent cell types, or other

metabolic tissues. EndoC-bH1, islet, and b cell OCRs were

commonly enriched for binding sites of transcription factors
790 Cell Reports 26, 788–801, January 15, 2019
(TFs) implicated in islet cellular identity

and function (Figure 2C; group III:

FOXA2, FOXO1, RFX, NKX6-1, and

PDX1). EndoC-bH1 OCRs also showed

exclusive enrichment of sequence motifs

that correspond to TFs reported to regu-

late pluripotency and pancreatic progeni-

tor states (Figure 2C; group IV: HNF6,

SOX2, and OCT4), perhaps reflecting the

fetal origin and/or derivation of EndoC-

bH1. At EndoC-bH1 ATAC-seq OCRs,

promoter annotations (from ChromHMM;

STAR Methods) were widely conserved
between EndoC-bH1 and other cell types, including islets as ex-

pected (Figure S2A; centered Pearson correlation >0.95; STAR

Methods). In contrast, enhancers, which often encode cell-spe-

cific transcriptional regulatory elements (Heinz et al., 2015), at

EndoC-bH1 ATAC-seq OCRs were most comparable between

islet and EndoC-bH1 (Figure S2A, black point; centered Pearson

correlation �0.71).

To further assess similarities and differences between islet

and EndoC-bH1 epigenomes, we investigated the proportions

and features of chromatin states that were preserved or dispa-

rate between them. Unsurprisingly, a large proportion of pro-

moters (11,907/19,482; �61%) were preserved (Figure 2D)

and contained motifs for a variety of TFs from the ETS family

(e.g., ELK4, ETS, and ELF1; Table S3) with established roles

in cellular differentiation, proliferation, and apoptosis (Findlay

et al., 2013). Regions annotated as repressed in both islets

and EndoC-bH1 were enriched for CTCF and BORIS binding



A B

D E

C

Figure 2. Multiomic Comparative Analysis of EndoC-bH1 and Human Pancreatic Islets

(A) Integrated view of the EndoC-bH1 and human islet (epi)genomic and transcriptomic features surrounding the PCSK1 locus on chromosome 5. Histone

modification ChIP-seq data from EndoC-bH1, human islets, and five Epigenome Roadmap cell types and/or tissues (Roadmap Epigenomics Consortium et al.,

2015) were jointly analyzed to determine ChromHMM-based chromatin states in a uniform manner.

(B) Spearman correlation between EndoC-bH1 ATAC-seq profiles and their corresponding profiles from islets, sorted a or b cells, and other cell types and tissues

(STAR Methods). a, primary islet a cells; b, primary islet b cells; CD4T, CD4+ T immune cell; GM12878, B-lymphoblast cell line; skeletal, skeletal muscle; PBMC,

peripheral blood mononuclear cells. EndoC-bH1 exhibits greatest similarity to islets and their cellular constituents.

(C) Heatmap illustrating Z scores of HOMER enrichment p values for TF motifs in cell-type-specific OCRs.

(D) Comparison of chromatin states between EndoC-bH1 and human islets. Blue box highlights putative enhancer cis-REs in both EndoC-bH1 and human islets;

orange box indicates putative EndoC-bH1 enhancers that are repressed in islets.

(E) TF motifs enriched in genomic regions containing putative enhancer cis-REs in both EndoC-bH1 and islets (blue) or EndoC-bH1 only (orange). Points in gray

denote TFs that are not enriched in either category.

See also Figure S2 and Table S3.
motifs (Table S3), DNA-binding proteins known to bind and

establish transcriptional insulators at chromatin territory bound-

aries. 16,351 out of 51,325 putative enhancers (defined via

ChromHMM) were shared between islets and EndoC-bH1 (Fig-

ure 2D, blue box) and showed strong enrichment for general

(ATF3, AP-1, and JUN) TFs (Figure 2E, blue dots; Table S3)

relative to all enhancer regions. Interestingly, we observed a

substantial number of EndoC-bH1 enhancers that were anno-

tated as quiescent or repressed in islets (n = 19,380) (Figure 2D,

orange box). Relative to all enhancers, these sites were en-

riched for sequence motifs of TFs controlling pluripotency

(OCT2 and NANOG) (Sokolik et al., 2015; Tantin, 2013), pancre-

atic development or lineage specification (HNF6 and ISL1)

(Zhang et al., 2009), and b cell fate determination (PDX1 and
NKX6-1) (Thompson and Bhushan, 2017) (Figure 2E, orange

dots; Table S3). Based on these findings, it is possible that

these regions may represent fetal or developmental cis-REs

that are active in the fetal-derived EndoC-bH1 and inactive in

adult islets composed of mature b cells. Nonetheless, a signif-

icant number of cis-REs (n = 16,351) are conserved between

EndoC-bH1 and human islets.

Next, we measured EndoC-bH1 gene expression using RNA-

seq and compared it to RNA-seq profiles of islets and other cell

types and/or tissues (Figure S2B). As anticipated, the EndoC-

bH1 transcriptome most strongly correlated with transcriptomes

of islets (R = 0.87) and primary b cells (R = 0.86) among all tissues

or cells tested. Of the 27,564 protein coding and/or large

intergenic noncoding RNA (lincRNA) genes considered, 11,554
Cell Reports 26, 788–801, January 15, 2019 791



Table 1. Top 25 Expressed miRNAs in EndoC-bH1 Cells

miRNA

EndoC-bH1

Rank

EndoC-bH1

RPMMM

b Cell

Enrichment /

Depletion

hsa-miR-375 1 162076.925 2.84

hsa-miR-127-3p 2 90512.35 –

hsa-miR-27b-3p 3 85043.195 3.09

hsa-miR-192-5p 4 70126.5525 2.01

hsa-miR-192-5p_+_1 5 37621.0275 –

hsa-miR-182-5p 6 36662.2475 2.15

hsa-miR-22-3p 7 29623.8 2.87

hsa-miR-191-5p 8 25424.1575 3.02

hsa-miR-26a-2-5p 9 15578.9175 2.94

hsa-miR-26a-1-5p 10 15496.7075 2.94

hsa-miR-141-3p 11 13656.6825 2.84

hsa-miR-92a-1-3p 12 13615.6425 2.30

hsa-miR-30d-5p 13 11108.9275 0.75

hsa-miR-654-3p 14 11107.385 –

hsa-miR-148a-3p 15 10651.885 2.22

hsa-miR-200b-3p 16 10266.2575 1.48

hsa-miR-92a-2-3p 17 10161.165 2.30

hsa-miR-381 18 9342.8875 1.08

hsa-miR-25-3p 19 9230.2225 1.98

hsa-miR-181a-1-5p 20 8702.47 1.81

hsa-miR-181a-2-5p 21 8702.3125 1.81

hsa-miR-21-5p 22 8439.755 0.21

hsa-miR-183-5p 23 8338.08 1.58

hsa-miR-92b-3p 24 7531.295 4.63

hsa-miR-125a-5p 25 6743.8375 1.24

Table consisting of the top 25 expressed miRNAs in EndoC-bH1 cells.

Each miRNA rank was determined by its corresponding expression level

(reads per million mapped miRNA [RPMMM]). b cell enrichment / deple-

tion was determined by dividing the counts of eachmiRNA in b cells (from

van de Bunt et al., 2013) by the counts in islets.
were expressed in EndoC-bH1 and 12,231 genes were ex-

pressed in islet (with 10,473 genes expressed in both). Similarly,

EndoC-bH1 small non-coding RNA (miRNA) profiles resembled

human islets more than other profiled tissues (adipose, skeletal

muscle; Figure S2C) in principal-component analysis (PCA).

In particular, PC1 loadings were highly correlated with key islet

miRNAs, including miR-375 (Table 1), a critical regulator of

b cell mass and identity (Eliasson, 2017), while PC2 stratified

primary tissue (adipose, skeletal muscle, and islet) from immor-

talized cells (EndoC-bH1). Consistent with the PCA, miRNA

expression levels in EndoC-bH1 and islets were highly correlated

(R = 0.779; Figure S2D), and the vast majority of the most

highly expressed miRNAs in EndoC-bH1 have been reported

previously to be enriched in primary human b cells relative to

whole islets (Table 1) (van de Bunt et al., 2013). Together, the

chromatin accessibility, chromatin state, gene expression, and

small RNA expression analyses reveal substantial conservation

between the transcriptional regulatory and gene expression

landscapes of EndoC-bH1 and primary islets.
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Hi-C Profiling of EndoC-bH1 and Human Islets Reveals
b Cell-Specific Chromatin Looping Domains
Next, we sought to determine spatial chromatin organization and

identify chromatin domains both in EndoC-bH1 and islets using

Hi-C. We generated Hi-C maps with �6 billion reads each for

EndoC-bH1 and human islet cells. Themaps have 1.9 billion con-

tacts and 1.5 billion contacts, respectively. Using Juicer (Durand

et al., 2016a) (STAR Methods), we identified 9,100, 2,580, and

9,448 Hi-C loops in EndoC-bH1, human islet, and GM12878

(a human lymphoblastoid cell line) (Rao et al., 2014), respectively.

The reduced number of Hi-C loops identified in primary islet may

be attributed to lower unique read depth (�3.7 billion unique

reads in islet cells versus �4.7 billion unique reads in EndoC-

bH1) (Table S1). Together, this represents 19,428 independent

DNA loops. Aggregate peak analyses (APAs) (Rao et al., 2014)

(Figure 3A, top plots) revealed that chromatin looping sites (an-

chors) were comparable in EndoC-bH1, islets, and GM12878

for the majority of (>90%) the total chromatin loops (n = 19,428/

21,128). Consistent with previous studies (Rao et al., 2014; Vietri

Rudan et al., 2015), CTCF and CTCFL DNA-binding motifs were

overwhelmingly enriched (p < 1e-229 and p < 1e-114, respec-

tively) among all Hi-C anchor sequences (Table S4), verifying

that general 3Dchromatin structures and loops arepreservedbe-

tween different mammalian tissues and cell types. Importantly,

however, we detected 1,078 and 117 chromatin loops that

were exclusively present in EndoC-bH1 and islet, respectively,

compared to GM12878 (Figure 3A, bottom plots).

To further study cell-specific loops, we subdivided EndoC-

bH1 and GM12878 differential Hi-C loops into three classes

based on the cell type specificity of the ATAC-seq OCRs they

bring into physical proximity (Figure 3B): (A) loops between two

non-specific OCRs, (B) loops between two cell-specific OCRs,

or (C) loops between one cell-specific OCR and one non-specific

OCR. Class B/C loops were classified as cell-specific and further

studied. Comparison of EndoC-bH1-specific (n = 315) and

GM12878-specific (n = 308) loops revealed a strong bias for

cell-specific TF binding at anchor sites (Figure 3C). In EndoC-

bH1-specific anchors, we observed enrichment for TFs involved

in b cell differentiation and function (NKX6-1, FOXA2, and

FOXA1) (Thompson and Bhushan, 2017) as well as OCT4, a

key regulator for early embryo development (Le Bin et al.,

2014; Wu and Schöler, 2014), while GM12878-specific anchors

were enriched for TFs necessary for B cell proliferation and acti-

vation (MEF2C and NFAT) (Herglotz et al., 2016; Peng et al.,

2001). Furthermore, genes adjacent to EndoC-bH1-specific

anchors (STAR Methods) were most enriched (hypergeometric

false discovery rate [FDR]-adjusted p value < 0.05) for islet-asso-

ciated gene ontology (GO) terms, including insulin secretion,

glucose homeostasis, and neuronal or endocrine development

(Figure S3A; complete results are shown in Table S4). For several

genes affiliated with these GO terms, such as SLC30A8, which

encodes a zinc efflux transporter involved in zinc ion seques-

tering and insulin secretion (Mitchell et al., 2016), we observed

striking similarities in Hi-C contact frequencies between islet

and EndoC-bH1 cells (Figure 3D). In contrast, we observed far

fewer chromatin loops and large spans of polycomb-repressed

and/or quiescent chromatin for this locus in GM12878 cells

(Figure 3E).
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Figure 3. Generating a Genome-wide Map of Looping in EndoC-bH1 and Human Pancreatic Islets (Hi-C)

(A) Aggregate peak analysis (APA) plots showing the total signal across all loops (top three panels) and EndoC-bH1-specific loops (bottom three panels) in EndoC-

bH1 (left), human islet (center), and GM12878 (right) cells. Of note, islets exhibit similar contact point enrichments at EndoC-bH1-specific peaks compared to

GM12878.

(B) Cartoon illustrating the different classes of Hi-C loops between example common (gray peaks) or cell-specific (black peaks) ATAC-seq OCRs for two different

theoretical cell types.

(C) TF motifs enriched in GM12878 (blue) or EndoC-bH1 (red) Hi-C looping anchors that overlap cell-specific ATAC-seq peaks loop classes B and C in panel B

above).

(D) Hi-C contact maps highlighting a specific loop at the SLC30A8 locus (denoted by dotted black circle) observed in both EndoC-bH1 (left) and primary human

islets (center) but absent in GM12878 (right).

(E) Multiomics view of Hi-C, ChIA-PET (Pol2), chromatin states, ATAC-seq, RNA-seq, and gene tracks at the SLC30A8 neighborhood containing the Hi-C contact

point highlighted in (D). Tracks corresponding to EndoC-bH1, human islet, and GM12878 are colored red, black, and blue, respectively. Dark blue boxes below

each gene name represent the reference transcript annotations derived from Gencode v19. The red arrow at the bottom of the image indicates the putative

EndoC-bH1- and islet-specific promoter for SLC30A8. The black arrow indicates the putative embryonic stem cell and K562 cell-specific promoter for SLC30A8

(Roadmap Epigenomics Consortium et al., 2015).

See also Figure S3 and Table S4.
Approximately 50% (4,543/9,100) of EndoC-bH1 loop anchors

overlapped EndoC-bH1ATAC-seqOCRs, 44% (n = 1,987/4,543)

of which occurred between promoter and enhancer elements

(Figure S3B). Of these 4,543 loops, 587 were specifically present

in EndoC-bH1 yet absent in GM12878 cells (EndoC-bH1 spe-

cific); the remaining 3,956 were captured in both EndoC-bH1

andGM12878 (non-specific). We observed a substantially higher

proportion (64%; 376/587) of EndoC-bH1-specific loops that

overlapped EndoC-bH1 stretch enhancers (Parker et al., 2013)
(Fisher’s exact test p value < 4.23 e-42) compared to that of

nonspecific loops (34%; 1,358/3,956). To examine the functional

specificity of these loops, we overlapped chromatin state

(ChromHMM) information from EndoC-bH1 and 27 other tissue

or cell types for all EndoC-bH1 Hi-C loops. For each cell type,

we determined the percentage of Hi-C anchors that contained

the same chromatin state as EndoC-bH1 (STARMethods). Islets

had the highest percentage of chromatin states identical to

EndoC-bH1 at Hi-C anchor sites among all tested tissues or
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cell types, especially promoter-enhancer loops (Figure S3C; or-

ange line plot). These findings enumerate regions of cell-specific

chromatin looping associated with islet development and func-

tion and indicate that EndoC-bH1 forms cell-type-specific chro-

matin domains or territories highly similar to primary human islets.

EndoC-bH1 Pol2 ChIA-PET Identifies b Cell cis-
Regulatory Hubs
To map functional cis-regulatory networks, we completed RNA

polymerase (Pol2) ChIA-PET (Li et al., 2017b) in EndoC-bH1,

identifying 25,336 putative Pol2-mediated chromatin interac-

tions. We further filtered these interactions, retaining only those

for which both interacting sites (ChIA-PET anchors) overlapped

EndoC-bH1 ATAC-seq OCRs, resulting in 16,756 putative cis-

regulatory interactions (STAR Methods). As shown in Figure 4A,

the overwhelming majority of Pol2-mediated chromatin interac-

tions linked active enhancer and active promoter chromatin

states to themselves and each other. Importantly, ChIA-PET de-

tected EndoC-bH1-specific interactions (Figure 4B; compare

EndoC-bH1, GM12878, and K562 ChIA-PET tracks) coinciding

with those previously reported in targeted 4C-seq analyses of

human islets (Pasquali et al., 2014), including the ISL1 (Figure 4B;

n = 8 sites denoted by asterisks) and PDX1 (Figure S4A; n = 9

sites) loci.

In addition to replicating interactions previously studied by

4C-seq in human islets, Pol2 ChIA-PET identified hundreds of

additional promoter-promoter and promoter-enhancer interac-

tions genome-wide (Figure 4C; STAR Methods). These include

extensive Pol2 interactions in loci containing genes crucial for

b cell identity and development such as PDX1, ISL1, NKX6-1,

MAFB, and miR375 (Figure 4C, red text). As shown in Figures

4C and S4A, multiple interactions were detected between the

PDX1 promoter and classically described essential PDX1 tran-

scriptional enhancer sequences (n = 7/14 enhancer interactions),

which contain binding sites for islet TFs such as FOXA2 (Gao

et al., 2008; Gerrish et al., 2004). During embryonic development,

C57BL/6 mouse pancreata displayed a transition in expression

of MafB to MafA (Nishimura et al., 2006), suggesting that these

two factors are tightly involved in b cell differentiation and func-

tion. The high degree of connectivity in MAFB (versus that of

MAFA) may therefore reflect the fetal or naive state of EndoC-

bH1 cells.miR375, a small non-coding RNA, possessed multiple

connections to active promoter and enhancer elements (Fig-

ure 4C; red text), consistent with its role as a post-transcriptional

regulator of genes involved in b cell development or differentia-

tion and insulin secretion or exocytosis (Eliasson, 2017).

Interestingly, INSM1, a gene necessary for pancreatic endo-

crine cell differentiation (Osipovich et al., 2014), harbored the

most connections in EndoC-bH1 (n = 97 total interactions,

n = 7 between active promoters and enhancers; Figure S4B).

Other genes linked by ChIA-PET interactions are involved in

insulin processing and secretion, including PCSK1, one of the

prohormone convertases that catalyzes (pro)insulin processing;

RIMBP2, whose protein mediates formation of a complex for

polarized accumulation and exocytosis of insulin granules (Fan

et al., 2017); RGS7, a critical regulator of muscarinic-stimulated

insulin secretion (Wang et al., 2017); andCDC42, which is essen-

tial for second-phase insulin secretion (Wang et al., 2007). Addi-
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tionally, genes implicated in the protection and management of

stress were highly connected in EndoC-bH1 ChIA-PET interac-

tions. Notable candidates were ZFAND2B, whose induction

helps protect against human b amyloid peptide toxicity or accu-

mulation in a C. elegans transgenic Alzheimer’s disease model

(Hassan et al., 2009); SUSD4, a complement inhibitor and

tumor suppressor that modulates endoplasmic reticulum stress;

and CD59, which is required for mediating exocytosis events

facilitating insulin secretion (Blom, 2017; Krus et al., 2014).

Finally, TSHZ1, a PDX1 target gene whose expression levels

were notably lower in human islet donors with T2D (Raum

et al., 2015), harbored five links to active enhancer elements in

EndoC-bH1, suggesting that perturbation of the cis-regulatory

networks identified herein may contribute to T2D pathogenesis.

Finally, we sought to study to what extent the putative cis-reg-

ulatory networks detected in EndoC-bH1 may be preserved in

islets and other cell types. Due to limited availability of ChIA-

PET data in human islets and other relevant tissues, we decided

to use the chromatin interaction sites determined by EndoC-bH1

ChIA-PET and compare the functional annotations (ChromHMM

state annotations) at these loci across 27 different tissue or cell

types. Overall, aggregate counts of these chromatin state inter-

actions for each cell type weremost similar between EndoC-bH1

and islet (Figure 4D, green bar plots; STAR Methods). ChIA-PET

interactions between regions annotated as active promoters in

EndoC-bH1were similarly annotated as active promoters across

the 27 other cell or tissue types (Figure 4D, Act. promoter3 Act.

promoter, red line plot; STAR Methods). In contrast, the majority

of active enhancers interacting in EndoC-bH1 were marked

as active enhancers only in human islets (Figure 4D, Act.

Enhancer x Act. Enhancer, yellow line plot). Multidimensional

scaling of all cell or tissue chromatin state annotations at

EndoC-bH1 ChIA-PET interacting sites reaffirmed high similarity

between EndoC-bH1 and islets (Figure S4C), consistent with

strong conservation of active enhancer state annotations, as

previously observed (Figure 4D, line plots). These results sug-

gest that these interactions may represent b cell cis-regulatory

hubs. Indeed, anchors for 41% of ChIA-PET interactions

(6,904/16,756) overlapped islet stretch enhancers, suggesting

that these interactions may encompass key islet functional chro-

matin domains.

Integration of EndoC-bH1 Genotype and 3D Genomic
Interaction Maps Identifies Allelic Imbalance at b Cell-
Specific cis-REs
We and others have demonstrated that genetic variants,

including those associated with T2D and other quantitative mea-

sures of islet (dys)function, can alter cis-RE use (chromatin

accessibility quantitative trait loci [caQTL]) (Khetan et al., 2018)

and target gene expression (expression quantitative trait loci

[eQTL]; van de Bunt et al., 2015; Fadista et al., 2014). Recently,

approaches have been used to assess allelic effects on these

molecular features at heterozygous sites within a single sample.

We applied these allelic imbalance (AI) analyses in EndoC-bH1 to

identify genetic variants that alter b cell cis-REs and target gene

expression. To identify instances of AI in EndoC-bH1, we exam-

ined the allelic bias of �2 million heterozygous SNPs (STAR

Methods) within OCRs (ATAC-seq peaks), active enhancer
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Figure 4. RNA Polymerase 2 ChIA-PET Identifies Chromatin Interactions in EndoC-bH1

(A) Heatmap showing the chromatin states of EndoC-bH1 ChIA-PET interaction nodes.

(B) Example of a Pol2 ChIA-PET interaction between active enhancer (blue box) and active promoter (green box) cis-REs in the ISL1 locus on chromosome 5.

Asterisks under EndoC-bH1ChIA-PET interactions (red) indicate interacting sites in the ISL1 locus detected in human islet 4C-seq analyses (Pasquali et al., 2014).

(C) ChIA-PET network connectivity of gene promoters in EndoC-bH1 containing at least three interactions with other regulatory elements. For each gene, the

number of connections between other regulatory elements (e.g., active enhancer and weak enhancer) and the proportion of total links in which the chromatin

states are EndoC-bH1-specific (blue) or identical in both human islet and EndoC-bH1 (green) are shown in bar plots on the right. The remaining proportions that

are neither EndoC-bH1 specific nor common to islet and EndoC-bH1 are not shown. Red font denotes loci containing genes crucial for b cell identity and

development.

(D) Top: Bar plot illustrating the proportions of chromatin states at the Pol2 ChIA-PET interacting sites (nodes) shared between EndoC-bH1, islets, and additional

Epigenomics Roadmap tissues and cell lines. Bottom: Heatmap demonstrating the chromatin states of EndoC-bH1 Pol2 ChIA-PET interacting sites (nodes) in

islets (left) or stomach smooth muscle (right).

See also Figure S4.
elements (H3K27ac peaks), or expressed genes (RNA-seq; Fig-

ure 5A). Less than 10% of all SNPs occurring in OCRs and

enhancer elements showed significant AI (Figure 5A; part I;

FDR <10%). Approximately 25% of SNPs exhibited gene

expression AI (Figure 5A). When considering variants with
adequate coverage in both EndoC-bH1 ATAC-seq OCRs and

H3K27ac-marked enhancer regions (n = 1,734 SNPs), we noted

a positive correlation (R = 0.2) in the corresponding AI ratios (Fig-

ure S5A), suggesting the potential for coordinate regulation

of chromatin accessibility and histone modification at these
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Figure 5. Allelic Effects on EndoC-bH1 Transcriptional Regulatory Features

(A) EndoC-bH1 genotype information was integrated with ATAC-seq, H3K27ac, and RNA-seq data to identify sequence variants altering cis-RE accessibility and/

or activity (ATAC-seq and H3K27ac) or mRNA levels (RNA-seq) in EndoC-bH1. Pie charts summarize the proportions of variants exhibit significant AIs (blue;

FDR < 10%) in each of the corresponding sequencing profiles.

(B) Cartoon representation of approach to identify systematic allelic effects on EndoC-bH1 cis-regulatory networks.

(C) Multiomic view highlighting allelic effects on the SAMD5 locus cis-regulatory network in EndoC-bH1. A variant site exhibiting significant AI in H3K27 acet-

ylation (denoted by blue arrow) is linked (red ChIA-PET interaction) to the transcription start site (TSS) of SAMD5.Within the SAMD5 locus, five transcribed SNPs

exhibited significant allelic bias in gene expression (RNA-seq) in a direction consistent with the H3K27ac allelic bias.

(D) Left: Bar plots summarizing the proportions of variants with ATAC-seq/H3K27ac imbalance (blue bars; FDR < 10%) that overlap ChIA-PET interacting loci.

Right: Pie charts specifying the chromatin state (ChromHMM) annotations of the overlapping variants.

See also Figure S5 and Table S5.
cis-regulatory sites. In total, 119 out of 403 T2D-associated

signals (�30%) overlapped EndoC-bH1 cis-REs (Table S2); 34

out of 119 of these unique signals (�29%) were heterozygous

in EndoC-bH1 and potentially amenable to allelic analyses.

GREGOR (Schmidt et al., 2015) enrichment analysis of these

same 403 signals identified significant overlap (p value < 1 e-7)

in EndoC-bH1 ATAC-seq (n = 67 SNPs) OCRs.Moreover, 24,102

out of 126,013 of T2D-associated 99% genetic credible set

SNPs (19%) (Mahajan et al., 2018), representing 327 out of 380

distinct association signals (86%), overlapped an EndoC-bH1

ATAC-seq OCR and/or H3K27ac peak. These overlaps suggest

that EndoC-bH1 may be a useful tool to dissect the function of

cis-REs implicated in T2D genetic risk.

Next, we leveraged information from EndoC-bH1 ChIA-PET

interactions to determine potential allelic effects on cis-regulatory

networks and target gene expression. To achieve this, we (1) iden-
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tified SNPs overlapping enhancers with AI (H3K27ac and/or

ATAC-seq), (2) determined if the SNP-containing enhancer linked

(viaChIA-PET) to the transcription start site (TSS) of a gene, and (3)

assessed if SNPs in the promoter or transcribed region of the pre-

dicted target gene exhibited AI in H3K27ac and/or ATAC-seq or

RNA-seq, respectively (Figure 5B). For example, rs2294805 ex-

hibited AI in an EndoC-bH1 enhancer downstream of SAMD5

and was linked to this gene’s TSS by a ChIA-PET interaction

(Figure 5C). Notably, 5 out of 11 transcribed SAMD5 SNPs ex-

hibited significant AI in RNA-seq gene expression data. In all

cases, one parental allele (denoted in blue) was consistently over-

represented in both H3K27ac ChIP-seq and RNA-seq data.

Although the exact role of SAMD5 in human islets has not been

described, expression of this gene is high in adult a cells but ab-

sent in adult b cells (Lawlor et al., 2017a; Segerstolpe et al.,

2016; Wang et al., 2016). SAMD5 has been recently identified as



a marker of peribiliary gland (PBG) cells (Yagai et al., 2017), and

PBG stem cells have been documented to differentiate into

glucose-responsive pancreatic islets (Cardinale et al., 2011).

These data identify SAMD5 as one of the most highly connected

loci in EndoC-bH1 (Figures 4C andS4B; n = 35ChIA-PET connec-

tions between the gene and active enhancers; n = 5 interactions to

otheractivepromoters) andhighlight apotentialcis-regulatoryhub

for fetal b and islet cell development. Further manipulation of the

cis-regulatory network in this locus may provide greater insight

into its putative roles in islet cell differentiation and function.

Overall, 2,500 out of 5,515 (�45%) and 8,794 out of 43,492

(�20%) of heterozygous SNPs passing coverage thresholds

(STAR Methods) in ATAC-seq and H3K27ac cis-REs, respec-

tively, overlapped a ChIA-PET anchor (Figure 5D, bar plots).

For both datasets, <5% of SNPs demonstrated significant AI.

AI SNPs were present in active promoter and enhancer regions

of the genome (Figure 5D, pie charts marked with blue arrows).

Enhancers exhibited enriched AI compared to promoters. For

example, in the ATAC-seq data, 49.5% of AI SNPs occurred

in enhancers compared to 30.9% of non-AI SNPs (Fisher’s

exact test p value = 0.0002824 for comparison of enhancer

versus promoter counts). Similarly, 54.6% of H3K27ac AI SNPs

occurred in enhancers compared to 43% of non-AI SNPs

(Fisher’s exact test p value = 3.343e-05 for comparison of

enhancer versus promoter counts) (Figure 5D).

Enhancers govern cell-type-specific gene expression patterns

(Heinz et al., 2015).We identified 50 and 185 enhancer SNPswith

significant ATAC-seq and H3K27ac AI, respectively (Figure 5D,

yellow portion of pie charts marked with blue arrows). We used

ChIA-PET interactions to link enhancers showing AI to promoters

of the genes they might regulate (Table S5). This identified

enhancer-promoter links for 21 out of 50 (42%) ATAC-seq and

91 out of 185 (�49%) H3K27ac AI enhancer SNPs, respectively.

To assess if observed allelic effects on EndoC-bH1 cis-regula-

tory networks extended to primary islets, we examined the

eQTL direction of effect of these SNPs on steady-state expres-

sion of their predicted target genes in human islets (Varshney

et al., 2017). Islet eQTL Z scores (STAR Methods) were most

correlated to the H3K27ac allelic ratio at SNPs where the human

islet eQTL target gene (i.e., the gene whose expression in human

islets is influenced by a genetic variant) matched that of the

EndoC-bH1 ChIA-PET target gene (i.e., the gene linked to the

enhancer by EndoC-bH1 ChIA-PET as depicted in Figure 5B)

(n = 42/91) (Figure S5B, red points; R = 0.32), as opposed to

those genes in the locus that were not linked to the enhancer

by ChIA-PET (Figure S5B, gray points; R = 0.17).

Importantly, these analyses suggest that integrated EndoC-

bH1 omics analyses provide molecular insights into diabetes

genetics (e.g., GWAS). For example, T2D-associated index

and 99% credible set SNP rs57235767, for which the ‘‘C’’ risk

allele exhibited reduced EndoC-bH1 H3K27ac counts, exhibited

consistent downregulation of the ChIA-PET-predicted target

gene C11orf54 (Figure S5B, asterisk) expression in islet cohorts

(Fadista et al., 2014; Varshney et al., 2017). Similarly, the T2D

risk allele of rs3807136, a 99% credible set SNP in linkage

disequilibrium (r2 > 0.8) with the index and 99% credible set

SNP rs2268382, displayed a higher proportion of H3K27ac

counts in EndoC-bH1 and increased expression of the predicted
target gene, CEP41. These human islet SNP-gene interactions

(that are also recapitulated in EndoC-bH1 cells) represent high-

priority targets for (epi)genomic modification and should assist

efforts to decrypt the genes contributing to T2D pathogenesis.

DISCUSSION

Here, we report extensive multiomic mapping and integrated

analysis of cytogenetic (karyotyping), large-scale chromatin

structural conformation (Hi-C), cis-regulatory networks (ChIA-

PET), histone mark (ChIP-seq), chromatin accessibility (ATAC-

seq), genetic (genotyping), and gene expression (RNA-seq)

information in EndoC-bH1 human b cells. For convenient and

interactive browsing of this data, we have created an R shiny

web application (Chang et al., 2018) available at https://

shinyapps.jax.org/endoc-islet-multi-omics/. These data and

the browser application should serve as a resource for future

studies to explore the complex b cell regulatory programs un-

covered in this study and guide targeted studies of regulatory

networks, genes, and pathways of interest.

SKY revealed chromosomal heterogeneity among individual

cells in the EndoC-bH1 population. These included copy number

variation, such as chromosome 20 gain and chromosome 10

loss, that has been identified independently by array CGH ana-

lyses, as well as previously unappreciated structural alterations,

including chromosome 10:17 and 3:21 translocations, that

are frequent within the population. Consistent with SKY,

we observed enhanced contact frequency between chromo-

somes 3 and 21 in EndoC-bH1 Hi-C maps (Juicebox [Durand

et al., 2016b]; http://aidenlab.org/juicebox/?juiceboxURL=http://

bit.ly/2NxWcDp), suggesting that these two technologies may

complement one another to identify cell line abnormalities. As evi-

denced by other less prevalent chromosomal aberrations among

the population, it is possible that this cell line may continue to

evolve with continued passaging. Thus, caution should be taken,

and these aberrations shouldbeconsidered, in future (epi)genome

editing or EndoC-bH1 molecular and functional experiments

involving genes or regulatory elements on these chromosomes.

Overall, comparative analyses of omics profiles indicate sub-

stantial similarity among EndoC-bH1, islet, and primary b cell

transcriptomes (Figure 2B; Pearson R > 0.86). EndoC-bH1

open chromatin profiles were modestly correlated with islet

(R = 0.64) and primary b (R = 0.67) cells, highlighting potential drift

between the cell line and primary islet cells at the level

of chromatin accessibility. This includes �19,000 putative

EndoC-bH1 enhancers annotated as quiescent or polycomb

repressed in human islets. Interestingly, these sites contain po-

tential binding sites for TFs with important roles in b cell develop-

ment andpancreatic precursor fates and functions (e.g., NKX6-1,

PDX1, ISL1, and HNF6) (Thompson and Bhushan, 2017) and plu-

ripotency (e.g., NANOG and OCT2) (Sokolik et al., 2015; Tantin,

2013). Thus, thesediscordant featuresmay reflect the fetal nature

of EndoC-bH1 cells, their transformed state, or both.

Using Hi-C tomap higher-order chromatin structure in EndoC-

bH1 and a corresponding map from a human islet donor, we

defined islet and b cell chromatin domains and territories.

Consistent with previous findings (Rao et al., 2014), the overall

spatial chromatin organization was similar across EndoC-bH1,
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islet, and GM12878 cells (Figure 3A; top panel), and all Hi-C

anchors were enriched for TFs with general roles in chromatin

organization (e.g., CTCF and BORIS; Table S4). Importantly,

however, Hi-C analyses also identified �1,078 islet and b cell-

specific chromatin domains, several of which were evident in

both EndoC-bH1 and primary human islets (Figure 3). These

cell-specific chromatin territories were enriched for b cell-spe-

cific TFs (Figure 3C) and brought into close physical proximity

genes linked to islet-associated biological process GO terms

(Figure S3A) compared to those of GM12878.

Here, we also report a Pol2 ChIA-PET map of chromatin inter-

actions in EndoC-bH1, which further refined chromatin territories

to reveal functional EndoC-bH1 cis-regulatory networks. In addi-

tion to validating chromatin interactions previously reported in

4C-seq analyses at select loci in human islets, Pol2 ChIA-PET

identified hundreds of interactions genome-wide between active

promoter and enhancer regions potentially involved in the

regulation and transcription of dozens of b cell-specific loci (Fig-

ures 4A–4C). Comparison of Pol2 ChIA-PET interaction locations

in EndoC-bH1, GM12878, and K562 revealed that the over-

whelming majority of interactions at these loci were unique to

EndoC-bH1. Due to high cell input requirements (�100 million

cells) for current ChIA-PET library construction protocols (Li

et al., 2017b), wewere unable to validate these findings in human

islets. However, consistent with our previous observations be-

tween islet and EndoC-bH1 Hi-C maps (Figure S3C), we noted

that chromatin states of ChIA-PET interaction nodes in EndoC-

bH1 were most conserved in islet (Figure 4D, Figure S4C)

compared to those of 27 other cell or tissue types. Thus, the

cis-regulatory programs we define for EndoC-bH1 should pro-

vide valuable insights into important transcriptional hubs that

drive islet and b cell identity and function.

GWASs have identified hundreds of loci that contribute to ge-

netic risk of T2D and other quantitativemeasures of islet dysfunc-

tion, such as glucose, insulin, and proinsulin levels (Fuchsberger

et al., 2016; Mahajan et al., 2018). We and others have linked a

subset of SNPs and loci to altered cis-RE activity and steady-

state islet gene expression (van de Bunt et al., 2015; Fadista

et al., 2014; Khetan et al., 2018; Varshney et al., 2017). For the

majority of loci, challenges remain to define the (1) causal or func-

tional SNP, (2) determine its molecular effect on cis-RE activity,

and (3) identify the putative target gene(s). By combining our

dense genotype and 3D chromatin interaction (ChIA-PET) net-

works in EndoC-bH1, we sought to identify SNPs with imbal-

anced expression or cis-REuse and link themphysically with their

target genes. Using this approach, we linked 91 out of 185

(H3K27ac imbalanced) and 21 out of 50 (ATAC-seq imbalanced)

SNPs to potential target genes (e.g., rs2294805 to SAMD5 in Fig-

ure 5B). Our ability to assess chromatin interactions between dia-

betes-associated SNPs and their target genes was modest.

Nonetheless, we identified two candidate SNPs (rs57235767,

rs3807136) that demonstrated consistent directions-of-effect

on measures of cis-RE activity (e.g., H3K27ac) and target gene

expression in EndoC-bH1 and human islets (Figure S5B) (Var-

shney et al., 2017). Several factors could underlie the modest

frequency of diabetes-associated GWAS SNPs linked by Pol2

ChIA-PET interactions: (1) limited sensitivity of ChIA-PET technol-

ogy, (2) condition or disease specificity of GWAS SNP effects on
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cis-RE use or activity, or (3) condition-specific Pol2 interactions

between cis-REs and their target genes.

In summary, this study provides an integrated multiomic anal-

ysis of EndoC-bH1, a human pancreatic b cell line with increasing

utility and importance to the b cell and diabetes communities. In-

tegratedanalysisof chromatin interaction andgeneexpression in-

formation identified chromosomal territories and cis-regulatory

networks governing b cell identity and function. Overall, compar-

ison of EndoC-bH1 (epi)genomic and 3D chromatin profiles with

thoseof human islets verified commonsignaturesof gene expres-

sion, TF binding, and cis-RE use. These analyses also highlighted

genomic discrepancies between EndoC-bH1 and their primary

cell counterparts, possibly reflecting the fetal or embryonic origin

of the cell line and/or its transformed state. Integration of EndoC-

bH1cis-regulatorymapswith genome-widegenotype information

nominated target genes and identified SNP allelic effects on tran-

scriptional regulatory networks, including a subset of T2D-associ-

ated SNPs. Together, the data and tools provided here should

serve as helpful guides for rational design of targeted and hypoth-

esis-driven studies of candidate genes, pathways, or cis-REs to

determine their roles in b cell (dys)function and diabetes.
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A.N., Dai, C., Powers, A.C., and Stoffers, D.A. (2015). Tshz1 regulates pancre-

atic b-cell maturation. Diabetes 64, 2905–2914.

Ravassard, P., Hazhouz, Y., Pechberty, S., Bricout-Neveu, E., Armanet, M.,

Czernichow, P., and Scharfmann, R. (2011). A genetically engineered human

pancreatic b cell line exhibiting glucose-inducible insulin secretion. J. Clin.

Invest. 121, 3589–3597.

Roadmap Epigenomics Consortium; Kundaje, A., Meuleman, W., Ernst, J., Bi-

lenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J.,

Ziller, M.J., et al. (2015). Integrative analysis of 111 reference human epige-

nomes. Nature 518, 317–330.

Ross-Innes, C.S., Stark, R., Teschendorff, A.E., Holmes, K.A., Ali, H.R.,

Dunning, M.J., Brown, G.D., Gojis, O., Ellis, I.O., Green, A.R., et al. (2012). Dif-

ferential oestrogen receptor binding is associated with clinical outcome in

breast cancer. Nature 481, 389–393.

Rozowsky, J., Abyzov, A.,Wang, J., Alves, P., Raha, D., Harmanci, A., Leng, J.,

Bjornson, R., Kong, Y., Kitabayashi, N., et al. (2011). AlleleSeq: analysis of

allele-specific expression and binding in a network framework. Mol. Syst.

Biol. 7, 522.

Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L., Chen, Y.E., and

Willer, C.J. (2015). GREGOR: evaluating global enrichment of trait-associated

variants in epigenomic features using a systematic, data-driven approach.

Bioinformatics 31, 2601–2606.

Schultz, M.D., He, Y., Whitaker, J.W., Hariharan, M., Mukamel, E.A., Leung, D.,

Rajagopal, N., Nery, J.R., Urich, M.A., Chen, H., et al. (2015). Human body epi-

genome maps reveal noncanonical DNA methylation variation. Nature 523,

212–216.

Scott, L.J., Erdos, M.R., Huyghe, J.R., Welch, R.P., Beck, A.T., Wolford, B.N.,

Chines, P.S., Didion, J.P., Narisu, N., Stringham, H.M., et al. (2016). The ge-

netic regulatory signature of type 2 diabetes in human skeletal muscle. Nat.

Commun. 7, 11764.
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Islet ATAC-seq and RNA-seq Khetan et al., 2018 NCBI SRA: SRP117935

Purified beta and alpha cell ATAC-seq

and RNA-seq

Ackermann et al., 2016 NCBI GEO: GSE76268

Peripheral mononuclear blood cells

(PBMC) ATAC-seq

Ucar et al., 2017 European Genome-phenome Archive:

EGAS00001002605
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Skeletal muscle ATAC-seq Scott et al., 2016 dbGap: phs001068.v1.p1
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GM12878 and CD4+ T ATAC-seq Buenrostro et al., 2013 NCBI GEO: GSE47753

GM12878 RNA-seq Rozowsky et al., 2011 NCBI GEO: GSE30400

CD4+ T RNA-seq Schultz et al., 2015 NCBI GEO: GSE18927

Adipocyte RNA-seq ENCODE Project Consortium, 2012 NCBI GEO: GSE93486

GM12878 Hi-C Rao et al., 2014 NCBI GEO: GSE63525

K562 RNA Pol2 ChIA-PET Li et al., 2012 NCBI GEO: GSE39495

GM12878 RNA Pol2 ChIA-PET Tang et al., 2015 NCBI GEO: GSE72816

Experimental Models: Cell Lines

EndoC-betaH1: Cell line EndoCells/INSERM RRID: CVCL_L909

Software and Algorithms

Michigan Imputation Server Das et al., 2016 https://imputationserver.sph.umich.edu/index.html

Eagle v2.3 Loh et al., 2016 https://data.broadinstitute.org/alkesgroup/Eagle/
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software/shapeit/shapeit.html
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minimac3 Das et al., 2016 https://genome.sph.umich.edu/wiki/Minimac3

PLINK version 1.9 Purcell et al., 2007 http://zzz.bwh.harvard.edu/plink/

Trimmomatic version 0.33 Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

BWA version 0.7.12 Li, 2013 http://bio-bwa.sourceforge.net

Samtools version 1.3.1 Li et al., 2009 http://samtools.sourceforge.net/

Picard-tools version 1.95 The Broad Institute, 2013 https://broadinstitute.github.io/picard/

Qualimap version 2.2.1 Okonechnikov et al., 2016 http://qualimap.bioinfo.cipf.es

MACS version 2.1.0 Zhang et al., 2008 http://liulab.dfci.harvard.edu/MACS/

BEDTools version 2.26.0 Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

deepTools version 2.4.2 Ramı́rez et al., 2014 https://deeptools.readthedocs.io/en/develop/

ChromHMM version 1.17 Ernst and Kellis, 2017 http://compbio.mit.edu/ChromHMM/

HOMER version 4.6 Heinz et al., 2010 http://homer.ucsd.edu/homer/index.html

STAR version 2.53 Dobin et al., 2013 https://github.com/alexdobin/STAR

QoRTs version 1.2.42 Hartley and Mullikin, 2015 https://hartleys.github.io/QoRTs/

miRquant 2.0 Kanke et al., 2016 https://github.com/Sethupathy-Lab/miRquant

Juicer Tools version 1.75 Durand et al., 2016a https://github.com/aidenlab/juicer/wiki/

Juicer-Tools-Quick-Start

Juicebox version 1.6.11 Durand et al., 2016b https://www.aidenlab.org/juicebox/

GREAT version 3.0 McLean et al., 2010 http://great.stanford.edu/public/html/

ChIA-PET2 version 0.9.2 Li et al., 2017a https://github.com/GuipengLi/ChIA-PET2

WASP version 0.2.2 van de Geijn et al., 2015 https://github.com/bmvdgeijn/WASP

Other

Haplotype Reference Consortium (HRC version,

hrc.r1.1.2016) panel

McCarthy et al., 2016 http://www.haplotype-reference-consortium.org/

NHGRI-EBI Catalog of SNPs N/A https://www.ebi.ac.uk/gwas/

R Shiny application for browsing human islet

and EndoC-bH1 genomic data

This paper http://shinyapps.jax.org/endoc-islet-multi-omics
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Michael

Stitzel (michael.stitzel@jax.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

EndoC-bH1 cell culture and processing
EndoC-bH1 cells provided by EndoCells/INSERM were cultured and passaged as previously described (Ravassard et al., 2011).

Briefly, cells were seeded at a density of approximately 600,000 cells/cm2 on tissue culture-treated plates pre-coated overnight

with extracellular matrix (Sigma) and fibronectin (Sigma) in EndoC-bH1 complete medium. Cells were passaged approximately every

7 days. Cells were harvested at various passages and distinct sites (e.g., NHGRI, JAX-GM) for karyotyping, genotyping, ATAC-seq,

ChIP-seq, RNA-seq, Hi-C, and Pol2 ChIA-PET analyses.

Human islet acquisition and procurement
The single human pancreatic islet sample (obtained from a cadaveric donor; UNOS ID: ADAC418; sex: Female; age: 43 years old)

used in this study was obtained from the National Disease Research Interchange (NDRI) and processed according to NHGRI insti-

tutional review board-approved protocols. The islet was shipped overnight from the distribution center. On receipt, we pre-warmed

the islet to 37�C in shipping media for 1–2 h before harvest; �50,000 islet equivalents (IEQs) were harvested for Hi-C.
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METHOD DETAILS

Spectral karyotyping (SKY)
Spectral karyotyping of EndoC-bH1 was completed to identify structural and numerical chromosome aberrations using standard

procedures as previously described. In brief, EndoC-bH1 cells were cultured to 80% confluence. Metaphase spreads were prepared

from these cells after mitotic arrest with Colcemid (0.015 mg/mL, 16 to 18 hours) (GIBCO, Gaithersburg, MD), hypotonic treatment

(0.075 mol/L KCl, 20 minutes, 37�C), and fixation with methanol–acetic acid (3:1). Commercial SKY probe and software (Applied

Spectral Imaging INC, Carlsbad, CA) was used to identify and visualize the individually colored chromosomes obtained from two

slides’ worth of metaphase spreads from the same passage.

Genotyping, imputation, and phasing of EndoC-bH1
EndoC-bH1 was genotyped with the HumanOmni2.5–4v1_H BeadChip Array (Illumina, San Diego, CA, USA). We mapped the Illu-

mina array probe sequences to the hg19 genome assembly and excluded likely problematic ones as described in (Varshney

et al., 2017).

We applied the following filtering criteria to remove additional SNP probes prior to pre-phasing of the array genotypes: 1) we as-

sessed allele frequency of the SNPs using combined genotypes of EndoC-bH1 and 163 other samples that were genotyped on

similar chips; and 2) we removed SNPs with an alternate allele frequency difference with 1000G EUR samples > 20%, or palindromic

SNPs with a minor allele frequency > 20%, genotype missingness > 2.5%, Hardy-Weinberg p value < 10�4. At the end, a total of

1,851,388 SNPs were used in pre-phasing and imputation.

We performed pre-phasing and imputation separately on autosomal and chrX markers using the Michigan Imputation Server (Das

et al., 2016). We used Eagle v2.3 (Loh et al., 2016) for autosomal chip marker pre-phasing and SHAPEIT v2.r790 (Delaneau et al.,

2011) for chrX markers. We subsequently used minimac3 (Das et al., 2016) for imputation of missing genotypes using the Haplotype

Reference Consortium (HRC version, hrc.r1.1.2016) panel (McCarthy et al., 2016).

GWAS SNP pruning
Lists of reference SNP identifiers were obtained from the NHGRI-EBI Catalog of SNPs (https://www.ebi.ac.uk/gwas/; accessed

January 19th, 2017) for Type 2 diabetes, Type 1 diabetes, fasting glucose traits, fasting insulin traits, and proinsulin level categories.

For each disease category, GWAS SNPs were pruned using PLINK version 1.9 (Purcell et al., 2007) to identify SNPs in high linkage

disequilibrium (LD) (R2 > 0.8) using the parameters ‘‘–maf 0.05–clump–clump-p1 0.0001–clump-p2 0.01–clump-r2 0.8–clump-kb

1000’’ to ensure that each variant haplotype was tested only once during the enrichment analysis. For each SNP pair in LD

(R2 > 0.8) the SNP with the least significant p value was discarded. T2D-associated SNPs from (Mahajan et al., 2018) were obtained

and pruned using the same methodology described above.

ATAC-seq
EndoC-bH1 ATAC-seq libraries were prepared as previously described (Varshney et al., 2017) and sequenced on an Illumina

NextSeq 500 with 2 3 125 bp cycles. Raw sequence fastq files for adipocyte tissue, bulk islet (Khetan et al., 2018), islet beta and

alpha (GSE76268) (Ackermann et al., 2016), peripheral mononuclear blood cells (PBMC) (Ucar et al., 2017), skeletal muscle (Scott

et al., 2016), GM12878 and CD4+ T cells (GSE47753) (Buenrostro et al., 2013) were obtained from their corresponding studies.

Paired-end ATAC-seq reads were quality trimmed using Trimmomatic version 0.33 (Bolger et al., 2014) and parameters ‘‘TRAILING:3

SLIDINGWINDOW:4:15 MINLEN:36.’’ Trimmed reads were aligned to human genome (hg19) using BWA version 0.7.12 (Li, 2013),

specifically using the bwa mem –M option. Duplicate reads were removed using ‘‘MarkDuplicates’’ from Picard-tools version 1.95

(The Broad Institute, 2013). Quality of aligned reads were examined using Qualimap version 2.2.1 and default parameters

‘‘bamqc –bam –gd hg19.’’ (Okonechnikov et al., 2016). After preprocessing and quality filtering, peaks were called on alignments

with MACS version 2.1.0 (Zhang et al., 2008) using the parameters ‘‘-g ’hs’–nomodel–keep-dup all–broad–broad-cutoff 0.05 -f

BAMPE.’’ Peaks located in blacklisted regions of the genome were removed. Remaining overlapping peaks from all cell types

were merged with BEDTools version 2.26.0 (Quinlan and Hall, 2010) to generate a single peak set (n = 269,701). Raw read counts

in these peaks for each cell type were determined using the R packageDiffBind_2.4.8 (Ross-Innes et al., 2012). Spearman rank-order

correlation was calculated for cell types using the merged peaks with deepTools version 2.4.2 (Ramı́rez et al., 2014) and parameters

‘‘multiBamSummary BED-file –BED.’’

ChIP-seq
CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K79me2, H3K4me3, H3K9me3 ChIP-seq was performed as previously

described (Stitzel et al., 2010) and sequenced on an Illumina HiSeq 2000 using 2 3 100 bp cycles. Harmonized ChromHMM (Ernst

and Kellis, 2017) states for EndoC-bH1 and NIH Roadmap cells/tissues were determined as previously described: ‘‘Chromatin states

were determined by applying the ChromHMM (version 1.10) hidden Markov model algorithm at 200-bp resolution to five chromatin

marks and input. We ran ChromHMM with a range of possible states and selected a 13-state model, because it most accurately

captured information from higher-state models and provided sufficient resolution to identify biologically meaningful patterns in a

reproducible way’’ (Varshney et al., 2017).
e3 Cell Reports 26, 788–801.e1–e6, January 15, 2019

https://www.ebi.ac.uk/gwas/


Transcription factor motif enrichment analysis
‘‘findMotifsGenome.pl’’ (HOMER version 4.6 (Heinz et al., 2010)) script with parameters ‘‘hg19 -size 200’’ was used to determine TF

motifs enriched in ATAC-seq OCRs for each cell type (Figure 2C). In each analysis, all merged OCRs (n = 269,701) were provided as

background (e.g., EndoC-bH1 called OCRs (foreground) versus all merged OCRs (background)). The same parameters were used

to identify enriched motifs in either ‘‘Enhancers in Both EndoC-bH1 and Islet’’ (n = 16,351) or ‘‘Enhancers in EndoC-bH1 Only’’

(n = 19,380) compared to all enhancers (n = 51,325) (Figure 2D). The same HOMER script and parameters were also used to identify

enriched motifs in EndoC-bH1 (n = 315) versus GM12878 (n = 308) cell-specific Hi-C loops.

Similarity of cell/tissue type chromatin state (ChromHMM) annotations at EndoC-bH1 ATAC-seq OCRs
EndoC-bH1 ATAC-seq OCRs (n = 127,894) were overlapped with chromatin state (ChromHMM) annotations from EndoC-bH1,

human islet, adipocyte, skeletal muscle, GM12878, and PBMC cells provided in (Varshney et al., 2017). Next, only OCRs that

intersected a ChromHMM annotation from all tissue/cell types (n = 127,887/127,894) were retained (union set). Within a tissue/

cell type, or instances where multiple chromatin state elements intersected an EndoC-bH1 OCR, annotations were prioritized as fol-

lows: promoter, enhancer, transcription, repressed, or low signal. At each OCR, cell/tissue ChromHMM annotations were compared

to those of EndoC-bH1 and assigned a binary classification (1 = the annotations were the same, 0 = the annotations were different).

Aggregated counts of pairwise chromatin state annotations based on EndoC-bH1 OCRs were then computed for each tissue/cell

type, and a resulting similarity matrix was calculated using the ‘‘simil’’ function within the proxy version 0.4 R package (Meyer and

Buchta, 2018).

RNA-seq
Total RNA was extracted and purified from EndoC-bH1 using Trizol as previously described (Varshney et al., 2017). All sequencing

was performed on an Illumina NextSeq 500with 23 101 bp cycles. Raw fastq files for human islets (Khetan et al., 2018), islet beta and

alpha (Ackermann et al., 2016), PBMC (GSE90275), skeletal muscle (GSE78611), adipocyte (GSE93486) (ENCODE Project Con-

sortium, 2012), GM12878 (GSE30400) (Rozowsky et al., 2011), and CD4+ T cell (GSE18927) (Schultz et al., 2015) were obtained

from the associated databases. Paired-end RNA-seq reads were trimmed using Trimmomatic with the same parameters as used

for ATAC-seq reads. Trimmed reads were aligned to human genome (hg19) using STAR version 2.53 (Dobin et al., 2013) with default

parameters and expression levels of all genes were determined using QoRTs version 1.2.42 (Hartley and Mullikin, 2015) with default

parameters and Gencode v19 transcript annotations. A total of 27,564 protein-coding genes and long intergenic non-coding RNAs

(lincRNAs) were considered in the study.

miRNA-seq
Total RNA was extracted and purified from 2000-3000 islet equivalents (IEQ) or 2 3 106 EndoC-bH1 cells using Trizol (Life

Technologies). RNA quality was confirmed with Bioanalyzer 2100 (Agilent); islet samples with RNA integrity number (RIN) greater

than 6.5 were prepared for miRNA sequencing; EndoC- bH1 cells RNA RIN scores were > 9.0. miRNA libraries were prepared

at the NIH Intramural Sequencing Core (NISC) from 1 mg total RNA using Illumina’s TruSeq Small RNA Library Kit according to the

manufacturer’s guidelines, except a 10% acrylamide gel was used for better separation of library from adapters. Libraries were

pooled in groups of about 8 for gel purification. Single-end 51 base sequencing was performed on Illumina HiSeq 2500 sequencers

in Rapid Mode using version 2 chemistry. Data was processed using RTA version 1.18.64 and CASAVA 1.8.2. All resulting data was

processed with miRquant 2.0 (Kanke et al., 2016).

Hi-C
Hi-C libraries were generated as described in (Rao et al., 2014) and analyzed using the Juicer Tools version 1.75 pipeline (Durand

et al., 2016a). We sequenced 6,065,763,792 Hi-C read pairs in EndoC-bH1 cells, yielding 1,909,699,446 Hi-C contacts; we also

sequenced 6,009,242,588 Hi-C read pairs in islet cells, yielding 1,516,995,339 Hi-C contacts. Loci were assigned to A and B com-

partments at 500 kB resolution. Loops were annotated using HiCCUPS at 5kB and 10kB resolutions with default Juicer parameters.

This yielded a list of 9,100 loops in EndoC-bH1 cells and 2,580 loops in Islet cells. GM12878 loop calls (n = 9,448 loops) were down-

loaded fromGene Expression Omnibus (GSE63525). Differential loop calling with HiCCUPS at 5kb and 10kb identified 1,120 loops as

significantly enriched for EndoC-bH1 cells and 829 loops as significantly enriched for GM12878 cells. Similar comparison of islet and

EndoC-bH1 loops determined 935 loops as significantly enriched for EndoC-bH1 and 49 loops as being significantly enriched for

islet. Aggregate peak analysis (APA) plots were calculated using Juicer and the ‘‘apa’’ command using default parameters. Visual-

ization of Hi-C maps was performed using Juicebox version 1.6.11 (Durand et al., 2016b) with the ‘‘Observed/Expected’’ view and

‘‘Balanced’’ (Knight-Ruiz) normalization. All the code used in the above steps is publicly available at (https://github.com/theaidenlab).

Genomic Regions Enrichment of Annotations Tool (GREAT; (McLean et al., 2010) was used to identify pathways enriched in the single

nearest genes (whose TSS was within 2 kb) of EndoC-bH1-specific anchors.

ChIA-PET
EndoC-bH1 RNA Polymerase 2 (Pol2) ChIA-PET libraries were generated and sequenced reads were processed and analyzed ac-

cording to the protocol in (Li et al., 2017b). ChIA-PET interactions were identified using ChIA-PET2 (Li et al., 2017a) using the ‘‘bridge
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linker mode’’ option. Corresponding ChIA-PET interactions for K562 (GSE39495) and GM12878 (GSE72816) cells were obtained

fromGene Expression Omnibus. ChIA-PET andHi-C loopswere further filtered using the Bioconductor package InteractionSet_1.8.0

(Lun et al., 2016) to retain only those in which both interacting sites (anchors) overlappedOCRs. ChIA-PET anchors were annotated to

the nearest gene. To assess the physical connectivity between genes and their putative regulatory regions as captured by ChIA-PET

interactions, the number of distinct links between anchors annotated to each gene were counted and categorized by their chromatin

state and regulatory function. Counting was carried out both between each gene promoter and all linked regulatory regions (Fig-

ure 4C), and also between all annotated anchors regardless of their chromatin state and all linked regulatory regions (Figure S4B).

For example, consider anchors A1 and A2, both overlapping enhancer regions annotated to gene i. These anchors respectively

link to anchors B1, located in a TSS, and B2, in an enhancer. In this scenario, a connectivity degree of two would be computed

for gene i, corresponding to an enhancer-TSS and a TSS-TSS interaction, respectively.

The functional specificity of EndoC-bH1 ChIA-PET interactions was investigated by overlapping interaction anchors on

ChromHMM chromatin states computed from EndoC-bH1 data as well as 27 other tissue/cell types (Varshney et al., 2017), and

calculating the rate of conservation of chromatin states of both anchors. For example, a rate of 80%enhancer-enhancer conservation

would mean that 8 out of 10 interactions of this type in EndoC-bH1 are also found in another cell type. The resulting proportions were

computed for all interactions combined, and for specific relevant regulatory interactions (Figure 4D, line plots). In addition, aggre-

gated counts of pairwise chromatin state interactions based on EndoC-bH1 ChIA-PET interactions were computed for the same

cell types as above, and pairwise distances (D) between the resulting 29 count matrices were computed and plotted as scaled sim-

ilarity values relative to EndoC-bH1 (i.e., 1-D/Dmax), so thatD = 0 for EndoC-bH1 interactions andD = Dmax for the most divergent cell

type (Figure 4D, bar plot). These same methods were used to determine the functional specificity of EndoC-bH1 Hi-C interactions.

ATAC-seq allelic bias analysis
All allelic bias analyseswere performed usingWASP (van deGeijn et al., 2015) (version 0.2.2 after GitHub commit 5a52185 and bug fix

in pull request #67). For the EndoC-bH1 ATAC-seq allelic bias analyses, after original BWAmapping, reads were filtered to properly-

paired, high-quality autosomal reads using SAMtools (v. 1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 30) (Li et al., 2009). Remapping and

filtering as part of the WASP pipeline utilized the same parameters. As the last step of the WASP pipeline, duplicate removal was

performed using WASP’s rmdup_pe.py script. In order to avoid double-counting SNPs covered by both reads in a pair, overlapping

read pairs were clipped using bamUtil’s clipOverlap (https://genome.sph.umich.edu/wiki/BamUtil:_clipOverlap; v. 1.0.14). The four

replicate libraries were then merged using SAMtools merge.

For each SNP, we determined the number of reads containing each allele (requiring base quality of at least 20). We excluded SNPs

with total coverage less than 10, as well as SNPs in regions blacklisted by the ENCODE Consortium because of poor mappability

(wgEncodeDacMapabilityConsensusExcludable.bed and wgEncodeDukeMapabilityRegionsExcludable.bed). Allelic bias testing

was performed using a two-tailed binomial test, using an adjusted expectation for the null to account for residual reference bias

as described in (Scott et al., 2016). Briefly, for each of the 16 reference-alternate allele pairs (e.g., AG andGA are separate allele pairs),

we calculated the expected fraction of reference alleles (fracRef) under the null as the sum of the reference allele counts divided by

the sum of the total allele counts for SNPs of that allele pair. To prevent SNPs of high coverage from biasing the expected fracRef, we

down-sampled SNPs with coverage in the top 25th percentile to the median coverage, and used these downsampled reference and

total allele counts when calculating the expected fracRef. We used the observed allele-pair specific fracRef as the true fracRef under

the null hypothesis of no allelic bias in the binomial test. Multiple testing correction was performed using the Benjamini-Hochberg

correction (FDR < 10%).

ChIP-seq allelic bias analysis
For the EndoC-bH1 ChIP-seq allelic bias analyses, paired-end libraries were processed as follows. Adapters were trimmed using cta

(v. 0.1.2) and readsmapped using BWAmem (-M flag; v. 0.7.12). Readswere filtered to properly-paired, high-quality autosomal reads

using SAMtools (flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 30). Single-end libraries were mapped using BWA aln (v. 0.7.12; default param-

eters) and filtered using SAMtools (flags -F 4 -F 256 -F 2048 -q 30). Remapping and filtering as part of the WASP pipeline utilized the

same parameters as for the original mapping. For paired-end libraries, overlapping read pairs were clipped using bamUtil’s

clipOverlap. Replicates were merged using SAMtools merge. Allele counting and allelic bias testing was performed as described

above for ATAC-seq.

RNA-seq allelic bias analysis
For the EndoC-bH1 RNA-seq allelic bias analyses, after original STAR mapping, reads were filtered to properly-paired, high-quality

autosomal reads using SAMtools (v. 1.3.1; flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 255). Remapping and filtering as part of the WASP

pipeline utilized the same parameters. In order to avoid double-counting SNPs covered by both reads in a pair, overlapping read pairs

were clipped using bamUtil’s clipOverlap. Allele counting and allelic bias testing was performed as described above for ATAC-seq.

Comparison of islet eQTL and EndoC-bH1 biased SNPs allelic effect
Human islet eQTL data were obtained from (Varshney et al., 2017). For EndoC-bH1 biased (H3K27ac) enhancer SNPs that were also

linked (via ChIA-PET chromatin interaction) to a target gene (n = 91/185 SNPs in Figure 5C), all corresponding islet eQTL SNP-gene
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pairs were retrieved. For 42/91 SNPs linked to target genes, the H3K27ac allelic effect bias was calculated assuming that the EndoC-

bH1 effect allele was the same as the islet eQTL effect allele. Allelic effect bias was calculated by dividing the effect allele coverage

(either reference or alternate allele) by the total coverage of the SNP. A scalar value of 0.5 was subtracted from this value to determine

whether the effect allele had an increased (positive value), decreased (negative value), or no (zero) bias in H3K27ac coverage.

Randomly selected eQTL SNP-gene pairs that did not have corresponding connections (via ChIA-PET chromatin interaction) to a

target gene were considered as a null/background set.

QUANTIFICATION AND STATISTICAL ANALYSIS

Visualization of all Hi-C, ChIA-PET, chromatin state (ChromHMM), ATAC-seq, and RNA-seq data examined in this study (Figures 1, 2,

3, 4, and 5) were produced with R using ggplot2_3.0.0 (Wickham, 2016), pheatmap_1.0.10 (Kolde, 2018), Sushi_1.18.0 (Phanstiel

et al., 2014), as well as Juicer Tools (Figure 3) (Durand et al., 2016a) and Juicebox (Figure 3) (Durand et al., 2016b).

DATA AND SOFTWARE AVAILABILITY

The accession numbers for EndoC-bH1 Hi-C, ChIA-PET, ChIP-seq, ATAC-seq, RNA-seq, miRNA-seq as well as human islet Hi-C

data reported in this paper are: NCBI BioProject accession PRJNA480287, NCBI Gene Expression Omnibus accession

GSE118588. The accession number for EndoC-bH1 genotype data is: European Variation Archive accession ERZ674947 and project

PRJEB27824. The R shiny web application to visualize and interact with themulti-omic data generated in this study is freely available

at https://shinyapps.jax.org/endoc-islet-multi-omics/. Interactive Hi-C maps are available at aidenlab.org/juicebox.
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