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Next-generation sequencing studies have revealed genome-wide
structural variation patterns in cancer, such as chromothripsis and
chromoplexy, that do not engage a single discernable driver
mutation, and whose clinical relevance is unclear. We devised a
robust genomic metric able to identify cancers with a chromotype
called tandem duplicator phenotype (TDP) characterized by fre-
quent and distributed tandem duplications (TDs). Enriched only in
triple-negative breast cancer (TNBC) and in ovarian, endometrial,
and liver cancers, TDP tumors conjointly exhibit tumor protein p53
(TP53) mutations, disruption of breast cancer 1 (BRCA1), and in-
creased expression of DNA replication genes pointing at rereplica-
tion in a defective checkpoint environment as a plausible causal
mechanism. The resultant TDs in TDP augment global oncogene
expression and disrupt tumor suppressor genes. Importantly, the
TDP strongly correlates with cisplatin sensitivity in both TNBC cell
lines and primary patient-derived xenografts. We conclude that
the TDP is a common cancer chromotype that coordinately al-
ters oncogene/tumor suppressor expression with potential as a
marker for chemotherapeutic response.

tandem duplications | cisplatin | triple-negative breast cancer | BRCA1 |
TP53

Cancer evolution is generally thought to result from the pro-
gressive accumulation of genomic lesions affecting key reg-

ulatory components of physiological cellular functions (1, 2).
Oncogenic changes can manifest as single-nucleotide mutations;
copy number alterations, such as deletions or duplications; and
balanced rearrangements, including chromosomal translocations
and inversions (3).
More recently, the systematic application of whole-genome

sequencing (WGS) to the study of human cancer genomes has
uncovered more complex scenarios, where large portions of the
genome are affected by a multitude of somatic structural varia-
tions, which either originate from a few unique catastrophic
events [e.g., chromothripsis, chromoplexy (4–6)] or result from
the derangement of key molecular mechanisms leading to spe-
cific mutator phenotypes (7, 8). Although not always associated
with a discernible driver mutation, these genome-wide structural
variation patterns have the potential to deregulate several on-
cogenic elements simultaneously, and have been clearly associ-
ated with malignant phenotypes (4, 5, 9, 10).
Despite their relevance to the tumorigenic process, the causes

of these genome-wide chromotypes, the cancer-driving onco-
genic elements induced by these structural changes, and the
clinical implications of these configurations remain unclear. Al-
though recent advances have been made in understanding the
mechanisms underlying chromothripsis, no specific therapeutic
intervention has yet been identified for chromothriptic cancers
or for other chromotypes (11–14).
Here, we study one of these genomic configurations, the tan-

dem duplicator phenotype (TDP), which is characterized by the
presence of a large number of somatic head-to-tail DNA seg-

mental duplications [i.e., tandem duplications (TDs)] homoge-
neously distributed throughout the cancer genome (10, 15). In a
meta-analysis of over 3,000 cancer genomes, we identify the most
prevalent genetic features associated with this phenotype and
those genetic features that may be responsible for its tumorigenic
drive. Furthermore, we show an association between the extent
of TDP and sensitivity to platinum-based chemotherapy in cell
and primary xenograft models of triple-negative breast cancer
(TNBC), providing a first indication of the potential utility of
the TDP chromotype as a predictive genomic biomarker in a
clinical setting.

Results
Homogeneous Distribution of TDs Across Cancer Genomes as a
Systematic Measure of the TDP. To address the lack of a system-
atic approach to identify and score the TDP, we developed a
reproducible metric of TD genomic distribution, which we refer
to as the TDP score. For each tumor sample, we tally the total
number of TDs mapped by breakpoint analysis, and compare the
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observed (Obsi) and expected (Expi) numbers of TDs for each
chromosome i:

TDP  Score=  −
P

ijObsi −Expij
TD

+ k,

where k equals the threshold value, which normalizes all values
to the subsequently determined threshold for the TDP configu-
ration (discussed below).
This metric is easily able to distinguish between a genomic con-

figuration characterized by localized segmental amplifications with
TDs vs. the TDP, in which TDs are evenly distributed across all
chromosomes (Fig. 1A).
To address the incidence and genomic properties of the TDP,

we combined WGS data from 277 human genomes representing
11 cancer types, including 96 breast tumors and cancer cell lines
(4, 9, 10, 15–22) (Dataset S1). We observed that the TDP score
distribution in this dataset follows a trimodal pattern (Materials
and Methods and Fig. S1A), suggesting that cancers can be sep-
arated into distinct groups based on their propensity for TD
formation. Upon visual inspection of tumors within a range of
TDP scores by Circos plots, those tumors with the highest scores
show the characteristic TD distribution of the TDP (Fig. 1A). In
order to derive an unbiased threshold for classifying TDP tu-
mors, we identified the threshold as the score that corresponds
to 2 SDs from the second modal peak (−0.71; Fig. S1A). To
simplify data presentation, we then set the TDP score to 0 at this
defining threshold (k), resulting in positive and negative scores
for TDP and non-TDP tumors, respectively (Fig. 1B). Using this
threshold, 18.1% of the tumors analyzed are classified as TDPs,
each showing a high number of TDs (average number of TDs per
sample = 112.2, range: 23–416, modal TDP score = 0.19) that
are broadly distributed throughout the genome (Fig. 1A and Fig.
S1 A and B). By contrast, non-TDP samples are either associated
with an intermediate number of TDs (10 to ∼100, modal TDP
score = −0.50) that are invariably clustered in specific genomic
regions or have a low number of TDs altogether (<20) indicative
of a more stable genome (Fig. 1A and Fig. S1 A and B).
We applied a similar scoring method to the three other basic

rearrangements (deletion, inversion, and interchromosomal trans-
location), but found no evidence for distinct groups to manifest in
multimodal score distributions as seen for TDs (Fig. S1C). This
finding suggests that the TDP is not merely an indicator of genomic
instability but, instead, represents a unique tumor subgroup with a
distinct structural phenotype.

Previous evidence has suggested a higher frequency of the
TDP in TNBC and ovarian (OV) cancer (19). Using our more
precise and quantitative TDP measure based on only the WGS
dataset, we confirmed that the TDP occurs statistically more fre-
quently in TNBC (P = 2.16E-04), OV carcinoma (P = 4.95E-02),
and hepatocellular carcinoma (P = 2.92E-02) but that it is sig-
nificantly depleted in non-TNBC (P = 5.27E-02), glioblastoma
(P = 4.10E-02), and prostate cancer (P = 1.77E-03) (Table 1).
Indeed, we rarely observed TDP samples in prostate cancer, in
which chromoplexy and chromothripsis appear to be the pre-
dominant whole-genome rearrangement patterns (4). This finding
suggests that different mechanisms are active in different tumor
types to produce specific dominant cancer genomic configurations.
Whereas the TDP score is based on the identification of TDs

through the assignment of breakpoints, and relies on the availability
of WGS data, Ng et al. (15) estimated the prevalence of the TDP by
counting the number of TD-like features from array-based copy
number profiling in high-grade serous OV carcinoma. We wanted
to compare the performance of our TDP scoring algorithm when
applied to sequence- vs. array-based detection systems. We there-
fore analyzed Affymetrix SNP 6.0 array segmented copy number
data from a subset of 81 tumor genomes profiled as part of The
Cancer Genome Atlas (TCGA) project to compute copy number
(array)-derived TDP scores and compare them with TDP scores
obtained using paired-end WGS data (Fig. S2 A and B). Using SNP
array copy number data alone, we could identify TDP samples with
high specificity (0.95; Fig. S2 C and D) but lower sensitivity (0.57),
likely due to the lower resolution of array data in detecting short
segmental duplications. To increase the discrimination power of the
SNP array-based TDP classification, we set a more stringent
threshold to categorize non-TDP samples (Fig. S2E) and im-
prove the sensitivity of the technology to 0.80 (Fig. S2F).
The advantage of analyzing array-based data is the availability

of a larger number of cancer samples. When we classified 2,987
primary tumors from several TCGA datasets profiled using the
Affymetrix SNP 6.0 array, we were able to reproduce our pre-
vious findings that the TDP is significantly enriched in TNBC
(P = 1.23E-08) and OV cancer (P = 4.16E-94), whereas it is
depleted in non-TNBC (P = 2.41E-20) (Table 1 and Dataset S2).
In addition, because of the greater number of available tumors in
the TCGA array dataset, we found that uterine corpus endo-
metrial carcinoma (UCEC) also is enriched in TDPs (P = 2.80E-
09). Interestingly, most of the UCEC samples classified as TDPs
belong to the recently described cluster 4 endometrial carcinoma
subtype, which is characterized by an extensive degree of copy
number variations (CNVs) and has been shown to share a similar

Fig. 1. TDP scoring and sample classification. (A) Circos plots showing structural variations of representative cancer genomes with different levels of TDP
scores. For each plot, sample identification number, the TDP score, and number of TDs over the total number of detected rearrangements are indicated (top
to bottom). Structural variations were classified based on the four basic discordant paired-end mappings as TDs (red), deletions (blue), unpaired inversions
(green), or interchromosomal translocations (gray). (B) Trimodal distribution of the TDP score values across the 277 cancer samples examined.
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molecular phenotype with TNBC and OV cancer (23). The con-
sistent observation of TDP enrichment/depletion across alterna-
tive cancer datasets, generated via diverse genomic technologies
and analysis protocols, suggests that our scoring approach is re-
producible and generalizable.

TD Breakpoints Occur in Regions of Open Chromatin and Active
Transcription. To investigate possible molecular mechanisms for
the generation of the TDP, we examined the genetic, epigenetic,
and transcriptional configurations of the chromosomal coordi-
nates affected by TD events in TDP genomes. We focused our
analysis on breast cancer [TNB and non-TNB (NTNB) WGS
datasets, n = 23 TDP tumor genomes], because this type of
cancer was the best-represented tumor type in our WGS sample
cohort, and therefore provided adequate statistical power. We
first asked whether TDs in TDP occurred in functional regions of
the genome enriched for genes. We observed a highly significant
positive correlation between the number of TD breakpoints and
the number of genes in local windows along the genome (R = 0.5,
P = 1.8E-178; 10-Mb sliding windows, 1-Mb offset; Fig. S3A).
Furthermore, TD breakpoints were biased to occur within gene
bodies (exons + introns) as opposed to intergenically (P < 1.0E-
04; Fig. S3B). We assessed the physiological expression levels of
genes that are frequently affected by breast cancer TD break-
points in normal breast tissue. Based on a collection of 106
normal breast epithelium samples from the TCGA breast cancer
dataset, genes located at the boundaries of TDs show signifi-
cantly higher levels of activity in the normal breast when com-
pared with the entire gene population (P < 2.2E-16; Fig. S3C).
This observation is consistent with the positioning of TD
boundaries near genes with antioncogenic signals, which would
subsequently be disrupted during TD formation. However, it also
suggests that TD formation requires transcriptional activity. In-
deed, we observed a significant enrichment of Pol2 binding
sites as well as histone modification marks associated with
an open chromatin configuration (H3K4me3, H3K4me1, and
H3K27ac) in the proximity of TD breakpoints (P < 1.0E-04; Fig.
S3 D–F). This finding is in agreement with recent findings de-
scribing a strong affinity of structural variation breakpoints for
genomic regions characterized by protein binding and euchro-
matin (22). By contrast, H3K9me3 signals, which mark hetero-
chromatin, were depleted from TD breakpoint regions (P <
1.0E-04; Fig. S3 E and F). Concordant results were obtained by
testing different nonoverlapping symmetrical windows around
the TD breakpoints, showing that significant associations between

functionalized chromatin regions and TDs are maintained up to
∼200–500 kb from the TD breakpoints (Fig. S3G). Overall, these
results concordantly indicate a significantly higher likelihood for
TD breakpoints to affect transcriptionally active, easily accessible
chromatin regions. The mechanistic underpinnings of this re-
lationship are unclear. One possibility is that if TDs are related to
replisome stalling, collisions between the replisome and ongoing
transcription might be more common in highly transcribed genes.
Alternatively, the TDs embedded within certain highly transcribed
genes may be preferentially selected during tumor evolution
(discussed below).

Genomic Features of TDs in TDP and Non-TDP Tumors. A comparison
between the genomic properties of structural rearrangements oc-
curring in TDP and non-TDP samples shows a striking difference
in the per-sample median TD span size, with TDP samples having
significantly smaller median spans (median span size = 89.9 kb for
TDPs and 1,189.7 kb for non-TDPs; P = 7.23E-09; Fig. 2A). More
specifically, by plotting the distribution of the collection of all in-
dividual TD spans for TDP and non-TDP genomes (WGS dataset;
n = 50 and n = 227, respectively), we observed that whereas non-
TDP tumors feature a continuum range of very large TDs reaching
a plateau at around 1 Mb, TDP samples are characterized by two
sharper TD span distribution modes at ∼10 kb and ∼250 kb (Fig.
2B). This finding suggests that in TDP tumors, the mechanism for
generating TDs may be different than for non-TDP tumors.
We directly sequenced the rearrangement junctions of 122

TDs from 11 different TNBC cell lines of both TDP and non-
TDP types, and analyzed the sequences at the breakpoint junc-
tions for patterns indicative of specific DNA repair mechanisms
(10, 21, 24). We classified the validated breakpoint junctions into
those junctions characterized by the presence of short (<10 bps)
or long insertions; short (<5 bps), long, or no microhomology
(MH); or long-range imperfect homology (Fig. 2C). The large
majority of TDs in TDP tumors (72%, range: 46–82%) show
overlapping MH between the two DNA segments contributing
to the rearrangement junction, suggesting that the underlying
mechanism entails MH-mediated end-joining or MH-mediated
break-induced replication (MMBIR) (13, 24). Significantly, only
40% (range: 27–86%) of TDs found in non-TDP tumors show a
similar profile [odds ratio (OR) = 3.6, P = 6E-04; Fig. 2C and
Dataset S3]. By contrast, TD rearrangements characterized by long-
range imperfect homology, a signature indicative of nonallelic ho-
mologous repair (NAHR) (24), are prevalent in non-TDP tumors
[23% (range: 0–50%) vs. 7% (range: 0–31%) in TDPs; OR = 0.25,

Table 1. Prevalence of the TDP among different tumor types

WGS SNP array*

Cancer type Total no. TDP no. % P Status Total no. TDP no. % P Status

TNBC 40 17 42.5 2.16E-04 E 94 37 39.4 1.23E-08 E
Other breast cancers (non-TNBC) 56 6 10.7 5.27E-02 D 594 22 3.7 2.41E-20 D
Colorectal adenocarcinoma 14 0 0.0 6.11E-02 ns 545 6 1.1 3.36E-31 D
Glioblastoma 16 0 0.0 4.10E-02 D 18 2 11.1 2.50E-01 ns
Hepatocellular carcinoma 19 7 36.8 2.92E-02 E NA — — —

Kidney renal clear cell carcinoma 3 0 0.0 5.49E-01 ns 509 2 0.4 4.61E-34 D
Lung adenocarcinoma 25 3 12.0 1.69E-01 ns NA — — —

Lung squamous cell carcinoma 18 5 27.8 1.24E-01 ns 364 31 8.5 3.43E-05 D
Multiple myeloma 7 0 0.0 2.47E-01 ns NA — — —

OV 26 8 30.8 4.95E-02 E 382 236 61.8 4.16E-94 E
Prostate cancer 43 1 2.3 1.77E-03 D NA — — —

Endometrial carcinoma 10 3 30.0 1.76E-01 ns 481 123 25.6 2.80E-09 E
Total 277 50 18.1 2,987 459 15.4

TDP status was assigned based on either WGS data (n = 277 tumor samples) or Affymetrix SNP 6.0 array data (SNP array, n = 2,987
tumor samples). P values were computed using the binomial test. D, depletion; E, enrichment; ns, nonsignificant.
*Tumor samples were classified based on the stringent thresholds described in Fig. S2E.
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P = 2E-02; Fig. 2C and Dataset S3]. These differences further
support the idea that distinct DNA repair mechanisms may underlie
the formation of TDs in TDP and non-TDP tumors.
Recent evidence has revealed meaningful correlations be-

tween DNA replication timing, genomic instability, and the
emergence of DNA mutations (25, 26). Indeed, we found a
significant association between TD-affected genes and replica-
tion timing (27). Genes truncated by TD boundaries are found in
late replication regions, and genes spanned by TDs are enriched
in early replicating regions (P < 2.2E-16 and P < 2.2E-16 for the
TDP set; P = 9.3E-07 and P < 2.2E-16 for the non-TDP set; Fig.
2D). This specific pattern of replication timing is consistent
across all samples (TDPs and non-TDPs), and it may reflect a
shortage of DNA repair opportunities in late S phase, leading
to an increased incidence of misrepaired double-strand breaks

resulting in CNVs (25). However, given that DNA replication
typically encompasses ∼400- to 800-kb chromosomal domains, it
is plausible that the shorter TDs found in TDP genomes are
generated within intrareplication timing domains, whereas, the
larger, non-TDP TDs are more likely to result from the spatial
proximity of distinct replication domains through the tri-
dimensional looping of chromatin structures.

TDP Is Characterized by the Coordinated Perturbation of Several
Cancer Genes. One of the most direct consequences of DNA
segmental duplication is the increased expression of the genes
that are entirely comprised within the rearrangement, whose
copy number is thus augmented. We hypothesize that a genomic
configuration generating a large number of segmental dupli-
cations would represent a cancer genomic mechanism for the

Fig. 2. Genomic features of TDs in TDP and non-TDP tumors. (A) Correlation of TDP score and median TD span size across the 277 tumor genomes analyzed by
WGS. Horizontal lines indicate the overall median span size for the TDP and non-TDP sample subgroups. A P value was computed using Student’s t test. (B) TD
span distributions for the TDP and the non-TDP sample groups. TDP samples feature TDs with span peaks at∼10 kb and ∼150 kb. Non-TDP samples feature a much
larger TD span range, which homogeneously ranges from ∼1 to ∼10 Mb. A P value for the distance between the two empirical distributions was generated using
the two-sample Kolmogorov–Smirnov test. (C) Sequence analysis of TD breakpoints across TDP (n = 4) and non-TDP (n = 7) TNBC cell line genomes. ORs and
P values were computed using Fisher’s exact test. (D) Replication time (RT) of genes located inside or on the boundary of TDs in TDP and non-TDP samples based
on the breast cancer dataset. RT is expressed on a scale of 100 (early) to 1,500 (late). P values were computed based on the Mann–Whitney U test.
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modulation of hundreds of potential oncogenic signals, providing
a selective advantage for the TDP cancer cell. To assess this
possibility, we first compared changes in gene expression between
normal and tumor breast samples, with respect to the genes found
to be most frequently affected by TDs in the TDP breast cancer
WGS dataset (n = 23; Dataset S4). As hypothesized, genes that
are frequently found inside TDs are generally overexpressed in
breast cancers when compared with the normal breast epithelium
(median log2-fold change = 0.17, P = 4.0E-16). In contrast, genes
frequently located at the boundaries of TDs appear to be down-
regulated in breast cancers (median log2-fold change = −0.3, P =
5.0E-05) (Fig. 3A). Moreover, genes frequently encompassed by
TD segments are enriched in known oncogenes (P = 1.2E-02) and
genes whose increased expression levels are associated with a poor
prognosis for patients with breast cancer (P = 3.3E-05), whereas
genes that map to TD boundaries are most significantly associated
with known (P = 5.9E-05) and putative tumor suppressor genes
(STOP genes, P = 5.1E-04; good prognosis genes, P = 4.6E-12;
Fig. 3B). We confirmed these findings by identifying the genes
affected by TD-like features predicted using SNP array data,
which provided a significantly larger dataset (n = 418 TDP tumor
samples; Fig. S4A). Indeed, well-known oncogenes, such as paired
box 8 (PAX8), erb-b2 receptor tyrosine kinase 2 (ERBB2), and
MYC, are among the most recurrent genes that are spanned by
a TD across TDP samples, whereas known tumor suppressor
genes, such as RAD51L, PTEN, and RB1, populate the list of the
top genes affected by TD breakpoints (Fig. S4B and Dataset S5).
This systems strategy to generating the cancer state supposes

that many different combinations of oncogenic signals would
suffice as opposed to a single dominant oncogenic cassette such
as the cassette proposed for genes associated with ERBB2 am-
plification (9). To test this strategy, we examined the frequency
of specific one-gene and multiple-gene combinations affected by
TDs across 418 TDP genomes assessed using SNP array data
(TNB, NTNB, OV, and UCEC datasets) and found that only up
to a maximum of 15.5% of tumors share TD-like features af-
fecting a single common tumor suppressor gene (RAD51L1 and,
at lower frequencies, WWOX, NF1, RB1, PTEN, and BRCA1;
Fig. S4B and Dataset S5), and, even less frequently, an oncogene
(i.e., PAX8, duplicated in 10.5% of tumors, followed by ERBB2,
ERBB3, TERC, STAT2, CDK2, and MYC; Fig. S4B and Dataset

S5). In addition, two-gene combinations are relatively rare, with
the top-scoring gene pairs being those pairs that map within a
short distance of each other, and are therefore affected by the
same TDs (e.g., PAX8, PSD4, which are coordinately duplicated in
8.9% of the tumors examined, or PAX8, CBWD2, IL1RN, which
are coordinately duplicated in 6% of the tumors examined (Fig. S4
C–E). Much rarer are two-gene combinations comprising frequent
TD-boundary genes (Fig. S4C), arguing against the presence of a
dominant TD-affected cancer gene or small gene set.
Intriguingly, we observed that the shorter span TDs seen ex-

clusively in TDP (∼10 kb) do not cause the segmental duplication
of full-length genes but disrupt gene body integrity. We found that
38.2% (1,181 of 3,086) of the short-span TDs (span < 100 kb)
present in the 50 TDP cancer genomes analyzed by WGS are
completely embedded within a gene body, often disrupting the
intron/exon structure (P < 0.001; Fig. S5). Moreover, we observed
that the genes affected by these short TDs are more likely to
function as anticancer as opposed to procancer genes, because
they are enriched in TSGs (P = 1.5E-03) and putative TSGs (P =
1.8E-11), while being depleted for oncogenes (known oncogenes,
P = 7.3E-03; poor prognosis genes, P = 3.1E-04; Fig. 3B).
Taken together, these results strongly suggest that the conse-

quence of generating many TDs is a genome-wide mechanism
that simultaneously augments (albeit moderately) the expression
of many oncogenes and suppresses the expression of anti-
oncogenes/antitumor suppressors. In this model, there is no
obvious genetic driver by virtue of levels of expression or the
frequency of occurrence. Given these findings, and the fact that
the TDP characteristic is presumably established in the preneo-
plastic cells prior to the generation of TDs, we searched for
genetic alterations that might cause a cell to adopt a TDP.

Insights into the Molecular Background Favoring TDP Formation. In
the first analysis, we could not find enrichment of specific TDs in
the TDP tumors that could explain the unique genomic features
associated with the phenotype. This result suggested that there may
be intrinsic molecular differences between TDP and non-TDP tu-
mors that induce the TDP and that the changes in gene expression
arising from tandem duplicons are a consequence of the TDP.
To identify factors that may correlate with the molecular mech-

anisms underlying the phenotype, we investigated the characteristics

Fig. 3. TDP is characterized by the coordinated perturbation of several cancer genes. (A) Fold change (FC) in gene expression (breast tumor/normal breast)
for genes frequently located inside or at the boundary of TDs in TDP tumors (P values determined by the Mann–Whitney U test). (B) Genes frequently affected
by a TD breakpoint are enriched in anticancer genes (Left), whereas genes frequently spanned by a TD are enriched in procancer genes (Middle). (Right) Short-
span TDs appear to interfere with anticancer most frequently as opposed to procancer gene integrity. (P values determined by Fisher’s exact test).
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Fig. 4. Loss of the TP53 and BRCA1 tumor suppressor genes in the context of abnormal DNA replication may provide a permissive background for the
insurgence of the TDP. (A) TP53 mutation rate is recurrently higher in TDP samples compared with non-TDP samples. ORs and corresponding P values refer to
the enrichment of TDP samples for samples with gene disruption. Percentages of TDP and non-TDP samples carrying the gene disruption are indicated in
purple and green, respectively. (B and C) DNA replication genes are consistently up-regulated in TDP vs. non-TDP samples. (B) Top 10 GO terms significantly
enriched in up-regulated genes (TDP vs. non-TDP) across the four different datasets analyzed. (C) Heat map of individual gene expression levels. Tumor
samples are sorted based on tumor type and increasing TDP score. Only the 23 DEGs closely involved in DNA replication are shown. (D) TDP samples are
significantly enriched in BRCA1 low expressors across different tumor types. The threshold for low BRCA1 expression was defined based on the bimodal
distribution of BRCA1 transcriptional levels in each individual dataset. Graph annotations are as in A. Expression levels of the BRCA1 gene in TDP (purple) and
non-TDP (green) TNBC cell lines (E) and PDXs (F) are shown. TDP scores for these genomes were computed based on WGS data. The BRCA1 somatic mutational
status is indicated in brackets. mt, mutated; na, not available; wt, wild type. Pearson correlation coefficients (R) and their corresponding P values are reported
in each graph. (Right) Box plots of BRCA1 expression values for TDP and non-TDP sample groups, log2-fold changes and Student’s t test P values are shown.
(G) TDP samples are enriched for BRCA1-deficient tumors in both the TNB and OV datasets. BRCA1 loss is defined by the presence of germline or somatic
mutations, or promoter methylation.

E2378 | www.pnas.org/cgi/doi/10.1073/pnas.1520010113 Menghi et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 J
A

C
K

SO
N

 L
A

B
O

R
A

T
O

R
Y

 o
n 

A
pr

il 
1,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
64

.1
47

.5
7.

11
.

www.pnas.org/cgi/doi/10.1073/pnas.1520010113


of TDP as compared with non-TDP samples within each of the
three most highly TDP-enriched tumor datasets: TNB, OV, and
UCEC. In addition, we extended our analysis to non-TNBCs
(NTNB dataset), which, although depleted in TDPs as a cancer
group, comprised a sufficient number of TDP and non-TDP sam-
ples to perform statistical comparisons. We first computed the
overall mutation burden as the total number of genes per sample
that are affected by at least one nonsilent mutation as assessed by
exome sequencing (23, 28, 29). Although the TNB, NTNB, and, to
a lesser extent, OV datasets showed a significantly higher mutation
burden in the TDP subgroup (P = 3.7E-05, P = 9.4E-06, and P =
4.0E-02, respectively), this trend was not consistent in the remaining
dataset (UCEC; Fig. S6).
We therefore focused on individual gene mutations to search for

genes that, when mutated, are associated with the TDP. For each
cancer dataset analyzed, we compiled a list of frequently mutated
genes (i.e. mutated in at least 15% of cases within either the TDP
or non-TDP sample subgroup). Somatic mutation frequencies were
then compared between TDP and non-TDP tumors using Fisher’s
exact test, and significant differences were assessed across cancer
datasets (Dataset S6). Of a total of 56 frequently mutated genes,
the TP53 gene is the only one whose somatic mutation rate is re-
currently higher in TDP relative to non-TDP samples across dif-
ferent tumor types, with all of the four examined datasets showing
a significant enrichment (TNB, OR = 7.6; NTNB, OR = 4.6; OV,
OR = 5.2; UCEC, OR = 60.4) (Fig. 4A and Dataset S6).
We then asked whether TDP and non-TDP tumors show pro-

files of differential gene expression that distinguish these two
states. Following the identification of differentially expressed
genes (DEGs) between TDP and non-TDP tumors within each
tumor-type dataset, we performed a gene ontology (GO) en-
richment analysis of the lists of up- and down-DEGs to identify
biological processes most commonly perturbed in association with
the TDP. Up-regulation of genes engaged in biological processes
relevant to cell proliferation and DNA replication appeared to be
the most robustly and consistently enriched across all four ana-
lyzed datasets (Fig. 4B). This finding strongly suggests that TDPs
are more prone to increased/perturbed DNA replication. Among
the DNA replication genes most frequently up-regulated (in at
least three of the four datasets examined), CCNE1 was the one
with the highest cumulative fold change, followed by several crit-
ical DNA replication initiation factors, including CDT1, MCM2,
MCM6, and MCM10 (30, 31) (Fig 4C and Dataset S7).
Although no multigene cassettes engaged in specific biological

processes appeared to be consistently down-modulated in the
TDP datasets, we observed in the cancer subgroup of TNBC that
the BRCA1 gene is among the most significantly down-regulated
genes, with a greater than two-fold decrease in TDP vs. non-TDP
tumors (P = 0.03; Fig. S7 A and B). Indeed, we found a highly
significant enrichment for TDP tumors in BRCA1 low expressors
(27% of all TDP samples compared with 0% of non-TDP TNBC
samples; P = 3.9E-05). We validated the strong association be-
tween low BRCA1 expression and the TDP score in the NTNB
(P = 1.3E-03) and OV (P = 3.4E-03) datasets (Fig. 4D), and in two
other independent TNBC datasets (P = 0.027 and P = 0.05), all
showing an overall negative correlation between BRCA1 expres-
sion level and TDP score (Fig. 4 E and F). Furthermore, we found
a significant association between BRCA1 promoter methylation
status and reduced BRCA1 expression levels in the TNB (R =
−0.61, P = 2.3E-07) and OV (R = −0.74, P < 1.0E-05E) datasets
(Fig. S7C), pointing at epigenetic silencing as a key mechanism of
transcriptional inactivation of BRCA1 in TDP tumors.
Whereas we did not find any enrichment in BRCA1 somatic

mutations that distinguishes TDP, when we combined somatic
and germline mutations and promoter hypermethylation, we did
observe a significant increase in the frequency of BRCA1 dis-
ruption in TDP vs. non-TDP tumors in the TNB and OV data-
sets (OR = 9.8 and OR = 5.1, P = 8.0E-03 and P = 1.0E-03,

respectively; Fig. 4G). On the contrary, BRCA2 mutation rates
did not show any association with the TDP and, instead, appeared
to be modestly but consistently higher in the non-TDP tumor sets
(Fig. S7D), raising the hypothesis that the TDP is an exquisite
feature of BRCA1 loss and not of BRCA2 loss.
When taken together, these results suggest that a combination

of TP53 loss-of-function mutation, BRCA1 reduced expression/
activity, and overexpression of DNA replication and cell cycle
genes may be required for TDP generation.
We have established that certain multigene expression changes

are strongly associated with TDP tumors. We asked whether
changes were a result of the TDs or preceded the induction of these
structural mutations. Of the 23 DEGs involved in DNA replication
and cell cycle associated with TDP, only four (CALR, CCNE1,
RAD51, and TK1) were also found inside TDs in multiple TDP
samples but at modest frequencies of <5% (Dataset S5). If we re-
moved the TDP tumor samples harboring physical TDs spanning
these four differentially expressed DNA replication and cell cycle
genes, the association of these genes with the TDP remains statis-
tically significant (P < 1.0E-04; Fig. S8). This observation suggests
that their overexpression is likely to be engaged in the establishment
of the TDP and is not simply a consequence of the phenotype.

TDP as a Genomic Marker for Drug Sensitivity.We explored whether
the TDP could represent a marker for drug sensitivity by
searching the Genomics of Drug Sensitivity in Cancer database
(32) for drugs and compounds that differed in their effect between
the TDP and non-TDP breast cancer cell lines. Interestingly, cis-
platin was among six drugs showing a significant positive corre-
lation between TDP scores (computed based on available WGS
data) and IC50 values (Dataset S8). Given the utility of platinum-
based therapeutics as neoadjuvants in the clinical management of
patients with TNBC (33–35), and the reported association be-
tween platinum-based treatment clinical success and a “BRCA-
ness” molecular profile (36–38), we hypothesized that the TDP
subset of TNBCs may be characterized by a better response to
platinum-based chemotherapy. We therefore tested a total of 14
genomically characterized TNBC cell lines and found significant
negative correlations between IC50 values relative to both cisplatin
and carboplatin treatments and the TDP score (R = −0.57, P =
0.032 for cisplatin; R = −0.58, P = 0.029 for carboplatin) (Fig. 5A).
By contrast, olaparib, an inhibitor of the poly ADP ribose poly-
merase (PARP) shown to have antitumor activity in patients with
BRCA-mutated cancer (39, 40), did not show any significant as-
sociation with the TDP score when tested on our panel of TNBC
cell lines (Dataset S9), suggesting that the sensitivity of TDP tu-
mors to cisplatin may not be exclusively related to the mutational
status of BRCA1 or BRCA2.
Remarkably, although the levels of BRCA1 expression correlate

with the TDP score in the TNBC cell lines examined, we did not
observe any significant association between BRCA1 levels and ei-
ther cisplatin or carboplatin IC50 values (Dataset S9). This finding
indicates that platinum sensitivity correlates more directly with the
TDP score than with BRCA1 expression levels and that the TDP
score, which is modulated by other genes in addition to BRCA1,
may be a key genomic predictor of cisplatin sensitivity in TNBC.
We explored this hypothesis further by testing the in vivo

response to cisplatin treatment in eight independent patient-
derived xenograft (PDX) models of TNBC. Following a 3-wk-
long cisplatin regimen, four of the five TDP PDX models showed
remarkable levels of tumor shrinkage, including two complete
responses (>80% average tumor shrinkage across all animals in
the treatment arm, PDX3 and PDX6) and two partial responses
(30–80% average tumor shrinkage, PDX7 and PDX10) (Fig.
5B). On the contrary, none of the three non-TDP models ana-
lyzed exhibited a reduction of the original tumor volume after
3 wk of treatment, and all three responses to the cisplatin regi-
men were classified as progressive disease (>20% average tumor
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growth; Fig. 5B). Thus, in both established cell lines and in vivo
PDXs, TDP status is strongly associated with cisplatin sensitivity.

Discussion
Recent studies have described previously unrecognized massive
structural aberration events occurring on a genome-wide scale in
human cancer (4, 5, 10, 41). A fundamental challenge is to define
a quantitative metric to identify these global genomic configura-
tions in cancer samples systematically and to investigate the role
they play in tumorigenesis (42). Here, we devised a mathematical
approach to the unbiased recognition of the TDP (9, 10, 15, 19).
By applying this TDP scoring metric to a collection of ∼3,000
tumors with genomic data (WGS and/or SNP array), we provide
statistical evidence that the TDP is enriched in specific tumor
types, suggesting a distinct biological mechanism underlying this
phenotype that cuts across histological subtypes (Fig. S9A).
The mechanisms for the generation of segmental TDs have

been previously explored in Saccharomyces cerevisiae (43). Green
et al. (43) have shown how defects in the molecular machinery
responsible for preventing DNA rereplication can result in head-
to-tail segmental duplications in yeast. Notably, the TDs in this
study were mediated by NAHR between yeast transposon re-
petitive elements, a mechanism distinct from the MH-mediated
mechanisms that dominate in the TDP tumors we have analyzed
here. The authors proposed a mechanism by which the increase in
copy number of chromosomal segments can result from the mo-
lecular repair of stalled rereplication bubble structures emerging
in a permissive molecular background (e.g., following the de-
regulation of DNA replication proteins). They name this process
rereplication-induced gene amplification (RRIGA) and speculate
that it may play a critical role in oncogenesis (43, 44). Koszul et al.
(45) and Koszul and coworkers (46) identified an MH-mediated
POL32-dependent replicative mechanism underlying segmental
TD formation in S. cerevisiae. A genetic analysis of MH-mediated
TD formation in Escherichia coli by Slack et al. (47) implicated
stalled replication as a trigger to the formation of these TDs. These
observations are today collectively termed MMBIR (13, 14).
Costantino et al. (48) demonstrated the significant enrichment of
short-span copy number gains (<200 kb) in an artificial model of
DNA replication stress induced through the ectopic overexpression
of the CCNE1 gene in the U2OS human osteosarcoma cell line.
Our work supports these observations in a spontaneous human

cancer setting. Indeed, the size range of the DNA duplications
generated via RRIGA in yeast and via CCNE1 overexpression in
the U2OS cell line matches the size range of the TDs found in our
TDP samples, which we have shown to be characterized by the
significant overexpression of replication initiation genes, including
CDT1 and CCNE1 (Fig. 4C). We therefore speculate that the
mechanism of TD formation in the TDP chromotype may entail
replicative mechanisms, such as MMBIR.
Whereas cancers with high amplification of a single locus in

non-TDP tumors depend on a dominant driver oncogene, such as
ERBB2 orMYC, the TDP is unusual in that there does not appear
to be a discernable single cancer driver gene targeted by the TDP.
Rather, different combinations of many potential drivers appear
to be affected by the widespread genomic distribution of TDs.
Indeed, in our analysis of genes perturbed by TDs in TDP, we
could not find any individual gene that appears to be affected in
more than 15.5% of the samples examined (Dataset S5). How-
ever, the TDP configuration generates changes that affect the
expression and function of hundreds of genes in a distributed
manner within each tumor. Thus, TDP tumors may derive selec-
tive growth advantage from a systemic process, namely, genome-
wide segmental TD formation, which simultaneously targets many
cancer genes distributed across the genome. In seeking to uncover
the root genetic aberrations that may underlie the induction of the
TDP, we looked at the gene expression and mutational profiles
that are frequently found and most strongly associated with the
TDP across a number of tumor types. Our findings suggest that
the TDP is induced by specific combinations of gene perturbations
that (i) cause the loss of genome integrity (i.e., loss of TP53 and
BRCA1) and (ii) drive the augmented expression of cell cycle and
DNA replication genes (e.g., increased activity of CCNE1, CDT1).
In fact, combinations of these TDP-associated gene perturbations
occur remarkably more frequently in TDP than in non-TDP
TNBC tumors (OR = 17.2, P = 2.1E-05; Fig. S9B). Earlier reports
have suggested a BRCA1-independent mechanism for the TDP,
based on the absence of BRCA1 mutations in samples (breast and
OV carcinomas) with a large number of TDs (15, 19). However,
we observed a strong negative correlation between BRCA1 gene
expression and the TDP score, as well as the enrichment for
BRCA1-defective tumors (assessed by the presence of somatic or
germline mutations, or promoter hypermethylation) in TNBC
and OV cancer (Fig. 4 D–G). This finding strongly supports a

Fig. 5. TDP as a genomic marker for drug sensitivity. (A) TDP scores correlate with cisplatin or carboplatin sensitivities in TNBC cell lines. Pearson correlation
coefficients (R) and their corresponding P values are reported in the graph. Ln, natural logarithm. (B) TDP scores associate with cisplatin sensitivity in vivo.
Waterfall plots representing cisplatin response for eight TNB PDX models sorted by decreasing values of TDP scores are shown. Response calls are indicated
underneath each bar and were computed based on adapted Response Evaluation Criteria in Solid Tumors (RECIST) criteria as described in SI Materials and
Methods.
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previously unrecognized critical role for BRCA1 loss of function
in the induction of the TDP.
Finally, we find that the quantitative assessment of the TDP may

have clinical relevance. We describe an association between the
extent of TDP and greater sensitivity to platinum-based chemo-
therapy both in cell lines and in PDXs. It has been reported that
breast tumors with perturbations of BRCA1 respond better to
cisplatin treatment (37). Although our observations in vitro suggest
that cisplatin sensitivity is better correlated with the TDP score
than BRCA1 levels or mutational status, we suggest that the TDP
score integrates multiple genetic factors, such as TP53 status and
select driver gene expression (e.g., CDT1, CCNE1), which may be
the genetic components needed for the sensitivity phenotype.
Whereas recent neoadjuvant studies suggest that the effectiveness
of cisplatin in TNBC is associated with loss of BRCA1 by mutation
or low expression (34, 36, 38), it may be that the TDP score is a
more robust predictor of response to platinum-based chemother-
apies independent of tumor type. Indeed, high TDP scores are
enriched in TNBC, in OV cancer, and in the recently described
cluster 4 endometrial carcinoma, which have been shown to share a
similar transcriptional and molecular profile (23). Given the spe-
cific molecular determinants associated with the TDP across tumor
types, it will be interesting to investigate the possible benefit of a
cisplatin and PARP inhibitor combination in TDP tumors.
In summary, we envision that the TDP assessment may pro-

vide a unique genome sequence-based predictive marker for
platinum-based drug sensitivity and allow for detailed interro-
gation of more precise mechanisms of cisplatin sensitivity.

Materials and Methods
WGS Datasets and TDP Classification. A catalog of somatic structural variation
data was compiled from a number of WGS studies, comprising a total of 277
tumor samples, as listed in Dataset S1 (4, 9, 10, 15–22). We manually curated
the available structural variation information (relative orientation and
mapping coordinates of the discordant mate-pair or paired-end read clus-
ters) from every individual study to classify each reported somatic event into
one of the four basic rearrangements: deletion, TD, inversion, or inter-
chromosomal translocation (49). For studies that reported structural varia-
tion coordinates relative to the hg18 reference human genome, a lift over to
hg19 was performed using the Galaxy Lift-Over tool (https://usegalaxy.org).
Previous attempts at describing the genomic features of the TDP have relied
on a basic TD count or on the proportion of TDs relative to the total number
of structural variations in a cancer genome (10, 15). These approaches lack in
robustness, because they are prone to be influenced by observer and tech-
nical biases, such as sequencing coverage, and are not able to discriminate
between the genome-wide TD prevalence that characterizes the TDP vs.
abnormal TD accumulation in a few functional genomic loci, previously
described in association with focal amplification (9, 16). Our proposed metric
to calculate the TDP score is described in the main text. A visualization of the
TDP score distribution density plot across all samples suggested a multi-
modal distribution (Fig. S1A). We used the normalmixEM function of the
mixtools package in R to fit different numbers of mixture components (up to
five) to the TDP score value distribution (50), using default estimates as the
starting values for the iterative procedure. We compared the resulting
mixture model estimates using the Bayesian information criterion and found
that a trimodal distribution corresponded to the optimal fit.

TCGA Genomic Datasets. Affymetrix SNP 6.0 CNV datasets for primary tumor
tissues were downloaded from the TCGA Data Portal in the form of level
3 CNV data type (CNV segments). Primary tumor samples from the TCGA
breast invasive carcinoma dataset were classified as TNBC (TNB) or non-TNBC
(NTNB), according to TCGA clinical annotations (28) (https://tcga-data.nci.nih.
gov/tcga/).

TCGA somatic mutation data for the TNB, NTNB, OV, and UCEC datasets
were downloaded from the UCSC Cancer Genomic Browser (https://genome-
cancer.ucsc.edu) as gene-based somatic mutation calls generated by the
TCGA PANCANCER Analysis Working Group. For each sample, any gene af-
fected by at least one nonsilent somatic mutation (nonsense, missense, short
insertion/deletion, splice site mutation, stop codon read-through) was con-
sidered somatically mutated.

RNA-sequencing (RNA-seq) gene expression data for the TNB, NTNB, OV,
andUCECdatasetswere downloaded from the TCGAData Portal in the formof

level 3 RSEM raw expression estimates, generated using the TCGA RNA Se-
quencing Version 2 analysis pipeline. Raw gene read counts were then scale-
normalizedusing the trimmedmeanofM-values normalizationmethodbefore
being converted into log counts per million with associated precision weights
using the voom transformation included in the limma package in R (51).

Detection of TD-Like Features Based on Copy Number Profiling. Based on the
assumption that an isolated TD within any given genomic locus will result in a
chromosomal segmentwith uniform, increased copy number comparedwith its
two adjacent genomic regions, we scanned SNP array genomic data for CNV
profiles indicative of TD-like features (i.e., copy number segmentswith a length
ranging from 1 kb to 2 Mb, characterized by a copy number increase of one or
more units and flanked by segments of equal copy number) (15) (Fig. S2A). The
identified TD-like features were then used to compute TDP scores following
the same metric and threshold applied for WGS data (as described in Results).

Analysis of Differential Gene Expression. To identify DEGs between any two
given groups of samples, the RNA-seq expression datasetwas first filtered and
only genes whose expression value was >1 in at least n − 1 samples [with n =
number of samples in the smallest sample group (i.e., TDP, non-TDP)] were
retained for further analysis. Sample group comparisons were carried out
using the moderated t statistic of the limma package in R (51). A false dis-
covery rate-adjusted P-value threshold of 0.05 was used to identify DEGs.

GO Enrichment Analysis. Gene enrichment analyses for GO terms were carried
out using the topGO package in R (52). Briefly, predefined lists of interesting
genes were tested for their enrichment in GO terms against the all-gene
background using Fisher’s exact test as the test statistic and the eliminating
genes (elim) algorithm as the method for GO graph structure. GO terms with
less than 10 annotated genes were removed from the analysis.

Cell Culture and IC50 Determination. All of the cell lines were purchased from
the American Type Culture Collection. They were authenticated by short
tandem repeat DNA profiling and regularly tested for Mycoplasma contami-
nation using the MycoAlert PLUS Mycoplasma Detection Kit (Lonza). MB436,
HCC38, HCC1187, HCC1395, MDA-MB231, HCC1937, HCC1599, HCC1143,
HCC70, DU4475, MDA-MB157, and HCC1806 were maintained in RPMI with
10% (vol/vol) FBS. BT549 was maintained in DMEMwith 10% (vol/vol) FBS, and
Hs578T was maintained in DMEM with 10% (vol/vol) FBS and 0.01 mg/mL
bovine insulin. IC50 value determinations were obtained by plating target cells
in 96-well plates at a density of 1–5 × 103 cells per well. After 24 h, cisplatin
(Santa Cruz Biotechnology, Inc.) or carboplatin (Selleck Chemicals) was added
in triplicate wells to the culture medium in half-log serial dilutions in the range
of 3.3 nM to 100 μM. Cells were incubated for 72 h before assessing cell via-
bility using a WST-8 assay (Dojindo Molecular Technologies, Inc.). Absorbance
values were normalized to control wells (medium only), and IC50 values were
calculated using the IC50 R package (53). Two independent replicate experi-
ments were carried out for each cell line and each treatment, and the
average IC50 value from the two experiments was used for the analysis.

WGS of TNBC Cell Lines. Cell line genomic DNAwas isolated from ∼1 × 106 cells
using a DNeasy Kit (Qiagen) and fragmented using Covaris E220 (Covaris) to
a range of sizes centered on 500 bp. Paired-end DNA libraries were con-
structed using a NEBNext DNA Library Prep Master Mix set for Illumina (New
England BioLabs), including a bead-based size selection to select for inserts
with an average size of 500 bp and 10 cycles of PCR. The resulting libraries
were quantified by quantitative PCR and pooled in groups of two before
being sequenced on one lane of an Illumina HiSeq 2500 platform. Fastq files
were paired and run through the next-generation sequencing (NGS) quality
control (QC) Toolkit (version 2.3; IlluQC_PRLL.pl) with a quality control cutoff
of 30, before alignment to the human reference genome (National Center
for Biotechnology Information Build 37 from the 1000 Genomes Project)
using bwa (version 0.7.4) and default parameters (bwa mem). The Hydra-
Multi algorithm (54) was used to predict structural variation events. All
datasets were analyzed at the same time, and structural variation events
were filtered as described by Malhotra et al. (55). Only structural variations
exclusive to individual datasets were considered for further analysis. WGS
data are freely available from the Sequence Read Archive database (www.
ncbi.nlm.nih.gov/sra) under project ID SRP057179.

Animal Work. All animal procedures were approved by The Jackson Labo-
ratory Institutional Animal Care and Use Committee (IACUC) under protocol
number 12027.

Additional methods information can be found in SI Materials and Methods.
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