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Abstract 13	

Single cell RNA-sequencing (scRNA-seq) precisely characterize gene expression levels and dissect variation in 14	

expression associated with the state (technical or biological) and the type of the cell, which is averaged out in 15	

bulk measurements. Multiple and correlated sources contribute to gene expression variation in single cells, 16	
which makes their estimation difficult with the existing methods developed for bulk measurements (e.g., 17	

surrogate variable analysis (SVA)) that estimate orthogonal transformations of these sources. We developed 18	

iteratively adjusted surrogate variable analysis (IA-SVA) that can estimate hidden and correlated sources of 19	

variation by identifying a set of genes affected with each hidden factor in an iterative manner. Analysis of 20	

scRNA-seq data from human cells showed that IA-SVA could accurately capture hidden variation arising from 21	

technical (e.g., stacked doublet cells) or biological sources (e.g., cell type or cell-cycle stage). Furthermore, IA-22	

SVA delivers a set of genes associated with the detected hidden source to be used in downstream data analyses. 23	

As a proof of concept, IA-SVA recapitulated known marker genes for islet cell subsets (e.g., alpha, beta), which 24	
improved the grouping of subsets into distinct clusters. Taken together, IA-SVA is an effective and novel 25	

method to dissect multiple and correlated sources of variation in scRNA-seq data.  26	

Introduction 27	

Single-cell RNA-Sequencing (scRNA-seq) enable precise characterization of gene expression 28	

levels, which harbour variation in expression associated with both technical (e.g., biases in 29	

capturing transcripts from single cells, PCR amplifications or cell contamination) and 30	

biological sources (e.g., differences in cell cycle stage or cell types). If these sources are not 31	

accurately identified and properly accounted for, they might confound the downstream 32	

analyses and hence the biological conclusions1-3. In bulk measurements, hidden sources of 33	

variation are typically unwanted (e.g., batch effects) and are computationally eliminated from 34	
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the data. However, in single cell RNA-seq data, variation/heterogeneity stemming from 35	

hidden biological sources can be the primary interest of the study; which necessitate their 36	

accurate detection (i.e., existence of a hidden factor) and estimation (i.e., contribution of this 37	

factor to the gene expression levels) for downstream data analyses and interpretation. For 38	

example, a recent such study uncovered a CD1C+ dendritic cell (DC) subset by profiling 39	

human blood samples4 and improved the immune monitoring of human DCs in health and 40	

disease. One challenge in detecting hidden sources of variation in scRNA-seq data lies in the 41	

existence of multiple and highly correlated hidden sources, including geometric library size 42	

(i.e., the library size of log-transformed read counts), number of expressed genes in a cell, 43	

experimental batch effects, cell cycle stage and cell type5-8. The correlated nature of hidden 44	

sources limits the efficacy of existing algorithms to accurately detect the source and estimate 45	

its contribution to the variation in the data.  46	

 ‘Surrogate variable analysis’ (SVA)9-11 is a family of algorithms that are developed to 47	

detect and remove hidden and “unwanted” variation (e.g., batch effect) in gene expression 48	

data by accurately parsing the data into signal and noise. A number of SVA-based methods 49	

have been developed and used for the analyses of microarray, bulk, and single-cell RNA-seq 50	

data including SSVA11 (supervised surrogate variable analysis), USVA10 (unsupervised SVA), 51	

ISVA12 (Independent SVA), RUV (removing unwanted variation)13,14, and most recently 52	

scLVM6 (single-cell latent variable model). These methods primarily aim to remove 53	

‘unwanted’ variation (e.g., batch or cell-cycle effect) in data while preserving the biological 54	

signal of interest typically to improve downstream differential expression analyses between 55	

cases and controls. For this purpose, they utilize PCA (principal component analysis), SVD 56	

(singular vector decomposition) or ICA (independent component analysis) to infer orthogonal 57	

transformations of hidden factors that can be used as covariates in downstream analysis. 58	

However, this paradigm by definition results in orthogonality between multiple estimated 59	

factors and limits the efficacy of existing SVA-based methods for single-cell data analyses, in 60	

which some of the sources of variation are ‘wanted’ and are highly correlated with each other.   61	

To fill this gap, we developed a robust and iterative SVA-based statistical framework: 62	

Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) (Figure 1A and Methods for 63	

details), which provides three major advantages. First, it accurately estimates multiple hidden 64	

sources of variation even if the sources are correlated with each other and with known 65	

sources, which is a limitation of existing SVA-based methods. Second, it enables assessing 66	

the significance of each detected factor for explaining the unmodeled variation in the data. 67	

Third, it delivers a set of genes that are significantly associated with the detected hidden 68	
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source. Application of IA-SVA for scRNA-seq data analyses is diverse including the 69	

detection of “unwanted” variation due to cell contamination or “wanted” variation associated 70	

with rare cell types (Figure 1B). In simulation studies we showed that IA-SVA i) provides 71	

high statistical power in detecting hidden factors; ii) controls Type I error rate at the nominal 72	

level (𝛼 = 0.05); iii) delivers high accuracy in estimating hidden factors. We evaluated the 73	

efficacy of IA-SVA on scRNA-seq data from human pancreatic islets and brain cells and 74	

showed that IA-SVA is effective in capturing heterogeneity associated with both technical 75	

(e.g., doublet cells) and biological sources (e.g., differences in cell types or cell-cycle stages). 76	

Furthermore, we showed that IA-SVA based gene selection can be further utilized in 77	

downstream analyses such as in data visualization using t-distributed stochastic neighbor 78	

embedding (tSNE) 15 and performs favourably compared to existing methods developed for 79	

gene selection and visualization (e.g., Spectral tSNE16 ). 80	

Results 81	

Benchmarking IA-SVA on simulated data.  82	

To assess and compare the detection power, Type I error rate, and the accuracy of hidden 83	

source estimates using IA-SVA and existing state-of-the-art methods (i.e., USVA and SSVA), 84	

we performed simulation studies (see Methods for details) under the null hypothesis (i.e., a 85	

group (case/control) variable affecting 10% of genes and no hidden factor) and under the 86	

alternative hypothesis (i.e., a group variable and three hidden factors affecting 30%, 20%, 10% 87	

of genes, respectively). Under the alternative hypothesis, we considered two correlation 88	

scenarios where the three hidden factors are moderately (|r|=~0.3-0.6) or weakly (|r|<0.3) 89	

correlated with the group variable (i.e., a known factor). Under each simulation scenario, we 90	

generated 1,000 scRNA-seq data sets (10,000 genes and 50 cells) and performed IA-SVA, 91	

USVA and SSVA (𝛼 =0.05, 50 permutations) on them to detect simulated hidden factors. 92	

Using these simulation results, we assessed the empirical Type I error rate of each method 93	

(i.e., the number of times each method detects a false positive factor under the null hypothesis 94	

at the nominal level of 0.05 divided by the number of simulations (n=1,000)). Similarly, we 95	

also quantified the empirical detection power rate of each method under different alternative 96	

hypothesis scenarios as the number of times each method detects a simulated factor under the 97	

alternative hypothesis (i.e., a factor actually exists and is detected as significant by the 98	

method) divided by the number of simulations. We used the average of the absolute Pearson 99	
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correlation coefficients between the simulated and estimated hidden factors to quantify the 100	

accuracy of estimates.  101	

 Simulation studies showed that IA-SVA performs as well or better than USVA and 102	

SSVA in terms of detection power and accuracy of the estimate while controlling the Type I 103	

error rate (0.04 for IA-SVA versus 0.09 for USVA and SSVA) (Table 1). In particular, IA-104	

SVA was more effective when a hidden factor affected a small percentage of genes and when 105	

the factors were correlated (|r|=0.3-0.6) with the known factor (i.e., group variable). For 106	

example IA-SVA detected Factor3, which affected only 10% genes, 87% of the time, 107	

whereas USVA and SSVA detected this factor 78% of the simulations (first three columns in 108	

Table 1). More importantly, IA-SVA correctly inferred the correlations among multiple 109	

hidden factors while USVA and SSVA delivered biased estimates due to their orthogonality 110	

assumption (Supplementary Figure S1).  111	

IA-SVA captures variation stemming from a small number of alpha cells.  112	

To test whether IA-SVA is effective in capturing variation within a homogenous cell 113	

population, we analysed scRNA-seq data generated from human alpha cells (n=101, marked 114	

with glucagon (GCG) expression) obtained from three diabetic patients17 using the Fluidigm 115	

C1 platform18, for which the original study did not report any separation of these alpha cells . 116	

Using geometric library size and patient ID as known factors, significant surrogate variables 117	

(SVs) were inferred using IA-SVA (𝛼 =0.05, 50 permutations) on the data (14,416 genes and 118	

101 cells). For comparison, we applied PCA, USVA, and tSNE on this data. In USVA 119	

analysis, similarly geometric library size and patient ID were used as known factors and 120	

significant SVs were obtained (𝛼 =0.05, 50 permutations). In the PCA analysis, PC1 was 121	

discarded since it is highly correlated (r = 0.99) with the geometric library size.  122	

Top two significant SVs inferred by IA-SVA clearly separated alpha cells into two 123	

groups (six outlier cells marked in red vs. the rest marked in grey at SV2 > 0.1) (Figure 2A). 124	

27 genes significantly associated with second SV (SV2) (Benjamini-Hochberg q-value (FDR) 125	

< 0.05, coefficient of determination (R2) > 0.6), which included genes expressed in fibroblasts 126	

such as COL4A1 and COL4A2. These genes were exclusively expressed in six outlier cells 127	

and clearly separated alpha cells into two clusters (Figure 2B). A larger set of SV2-associated 128	

genes (n = 108, FDR < 0.05, R2 > 0.3) was used for pathway and GO enrichment analyses 129	

and uncovered that these genes are associated with extracellular matrix receptors 130	

(Supplementary Table S1). Hence, these outlier cells likely arise from cell contamination 131	

(e.g., fibroblasts contaminating islet cells) or cell doublets (e.g., two cells captured together) 132	
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— a known problem in early Fluidigm C1 experiments20,21. Alternative methods (i.e., PCA, 133	

USVA, tSNE) failed to clearly detect these outlier cells (Figure 2C-E).  134	

We next studied whether this source of heterogeneity can be recapitulated in an 135	

independent and bigger human islet scRNA-seq dataset18, using gene expression profiles 136	

(17,168 genes) of 569 alpha cells from six diabetic patients. Using geometric library size and 137	

patient ID as known factors we identified top 2 significant SVs using IA-SVA and USVA. 138	

For comparison, we also conducted PCA and tSNE analyses on this data. In PCA, PC1 was 139	

discarded since it matched the geometric library size, which is adjusted for in IA-SVA and 140	

USVA analyses. IA-SVA’s SV2 separated alpha cells into two groups  (Supplementary 141	

Figure S2A) and as in the previous case it was associated with fibrotic response genes 142	

including SPARC, COL4A1, COL4A2 (n=81, FDR < 0.05 and R2 > 0.3) (Supplementary 143	

Figure S2B, GO/pathway results in Supplementary Table S2). These results highlight IA-144	

SVA’s ability to detect variation among alpha cells potentially due to cell contamination or 145	

cell doublets. PCA, USVA, and tSNE failed to clearly separate these compromised alpha 146	

cells (Supplementary Figure S2C-E) from the rest of the cells. 147	

IA-SVA accurately detects variation arising from cell-cycle stage differences.  148	

Differences in cell-cycle stages lead to variation in single cell gene expression data3. 149	

Supervised methods based on SVA have been developed to detect and correct for cell cycle 150	

stage differences, most notably the scLVM algorithm. scLVM implements a Bayesian latent 151	

variable model to infer hidden cell-cycle factors by using known cell cycle genes6. IA-SVA 152	

can provide an unsupervised alternative by accurately capturing cell-cycle related variation in 153	

single cell data. To show this, we analyzed scRNA-seq data (21,907 genes and 74 cells) 154	

obtained from human glioblastomas that has an established cell-cycle signature22. We 155	

conducted IA-SVA analyses by using geometric library size as a known factor and extracted 156	

top 2 significant SVs (𝛼=0.05, 50 permutations). For comparison, we applied PCA, USVA 157	

and tSNE analyses on this data, where for USVA geometric library size is used as a known 158	

factor.  159	

 IA-SVA’s SV1 clearly separated 13 cells from the rest (cells marked in red in Figure 160	

3A), which was associated with 119 genes (FDR < 0.05 and R2 > 0.3). Hierarchical clustering 161	

(ward.D2, cutree_cols=2) using these genes confirmed the separation of cells into two groups 162	

(Figure 3B), whereas alternative methods failed to clearly separate these two groups of cells 163	

(Figure 3C-E). Pathway and GO enrichment analyses of these genes23,24 revealed significant 164	

enrichment for cell-cycle process related GO terms and pathways (Supplementary Table S3), 165	
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suggesting that this hidden variation is stemming from cell-cycle stage differences. Indeed, 166	

cell-cycle-stage predictions of cells using the SCRAN R package25 showed that cells in 167	

different cell-cycle stages have different SV1 values (Figure 3F). We noted that SV1 is 168	

highly correlated (|r|= 0.44) with the geometric library size (typically the top contributor to 169	

the variation in single cell data), which might explain why alternative methods failed to 170	

clearly detect this variation in the data. These results demonstrate that IA-SVA can 171	

effectively detect variation stemming from cell-cycle differences in an unsupervised manner 172	

from single cell transcriptomes, even if this factor is highly correlated with known factors.  173	

IA-SVA based gene selection improves single cell data visualization.  174	

tSNE and other dimension reduction algorithms (e.g., Spectral tSNE implemented in Seurat16) 175	

are frequently used to visualize single cell data since they group together cells with similar 176	

gene expression patterns. However, variation introduced by technical or biological factors 177	

can confound the signal of interest and generate spurious clustering of data. IA-SVA can be 178	

particularly effective in handling this problem by estimating hidden factors of interest 179	

accurately while adjusting for all known factors of no interest. Moreover, IA-SVA identifies 180	

genes associated with each detected hidden factor, which could be biologically relevant such 181	

as marker genes for different cell types. The genes inferred by IA-SVA can significantly 182	

improve the performance of data visualization methods (e.g., tSNE15). To illustrate this, we 183	

studied single cell gene expression profiles (16,005 genes) of alpha (n=101, marked with 184	

glucagon (GCG) expression), beta (n=96, marked with insulin (INS) expression), and ductal 185	

(n=16, marked with KRT19 expression) cells obtained from three diabetic patients17. First, we 186	

applied tSNE on all genes (n=16,005) and color-coded genes based on the reported cell type 187	

assignments17, which failed to separate cells from different origins (Figure 4A). Next, we 188	

applied IA-SVA on this data using patient ID, batch ID and the number of expressed genes as 189	

known factors and obtained significant SVs. SV1 and SV2 separated cells into distinct 190	

clusters (Supplementary Figure S3), suggesting that these SVs might be associated with cell 191	

type differences. Indeed, genes associated with SV1 and SV2 (n=92, FDR < 0.05 and R2 > 192	

0.5) included known marker genes used in the original study (INS, GCG, KRT19) and 193	

uncovered alternative marker genes associated with alpha, beta and ductal cells (Figure 4B). 194	

These genes were annotated with diabetes and insulin processing related GO terms and 195	

pathways (Supplementary Table S4). As expected, tSNE analyses based on these 92 genes 196	

improved data visualization and clearly grouped together cells with respect to their cell type 197	

assignments (Figure 4C). Such improved analyses can be instrumental in discovering cells 198	
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that might be incorrectly labelled based on a single marker gene. For example, our analyses 199	

revealed a beta cell that is labelled as a ductal cell in the original study (one green cell 200	

clustered with blue cells in Figure 4C). For comparison, we applied recently developed 201	

visualization methods, CellView26 and Spectral tSNE16, on the same data with their 202	

recommended settings. CellView identified the 1000 most over-dispersed genes and 203	

conducted tSNE on these genes. Spectral tSNE detected 2,933 most over-dispersed genes and 204	

performed tSNE on significant principal components of these genes. On this small dataset, 205	

both methods managed to group cells of different types into distinct groups (Supplementary 206	

Figure S4), suggesting that existing methods for gene selection and visualization are effective 207	

when datasets are small in size and are not confounded with multiple factors. 208	

To test the efficacy of these methods on a bigger and more complex dataset, we 209	

conducted similar analyses on scRNA-seq data (19,226 genes) of 1,600 islet cells including 210	

alpha (n=946), beta (n=503), delta (n=58), and PP (n=93) cells from 6 diabetic and 12 non-211	

diabetic individuals, where the study includes multiple confounding factors (e.g., ethnicity, 212	

disease state)18. We noted that original cell type assignments significantly correlate with 213	

patient identifications (C=0.48, C=Pearson’s contingency coefficient) and with ethnicity 214	

(C=0.25), which would reduce the ability of existing methods to detect variation associated 215	

with cell types. In such complex datasets, failing to properly adjust for potential confounding 216	

factors prior to data analyses can lead to spurious grouping of cells, which might mislead the 217	

biological conclusions. Indeed, when these cells were visualized using tSNE using all genes 218	

(n=19,226) and were color-coded with respect to the original cell-type assignments 18, cell 219	

types did not separate from each other and spurious clusters were observed within each cell 220	

type (Figure 4D). As suspected, potential confounding factors (i.e., patient ID and ethnicity) 221	

explained this grouping of cells (Supplementary Figure S5), which might be misleading as 222	

researchers are looking for alpha and beta cell subtypes that can be related to Type 2 Diabetes 223	

pathogenesis27. To eliminate spurious clusters stemming from known factors, existing 224	

methods (e.g., Seurat) simply regress out all known factors prior to visualization. However, 225	

this might affect the signal of interest (i.e., cell type assignment), due to high correlation 226	

between known factors (i.e., patient ID) and the hidden factor (i.e., cell types). 227	

We applied IA-SVA on this complex data, while accounting for known factors (i.e., 228	

the number of expressed genes and patient ID) and extracted top four significant SVs 229	

(Supplementary Figure S6A and B). We identified 57 genes associated with the most 230	

significant SV (SV1) (FDR < 0.05 and R2 > 0.5), which included known marker genes (i.e., 231	

INS and GCG) (Supplementary Figure S7, Supplementary Table S5) and revealed novel 232	
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marker genes for these cell types. tSNE analyses using these 57 IA-SVA detected genes 233	

clearly separated different cell types into discrete groups and reinforced the importance of 234	

properly adjusting for known factors prior to data analyses (Figure 4E). For comparison, we 235	

applied CellView and Spectral tSNE on this data with recommended settings; however they 236	

failed to accurately group cells into distinct cell types (Figure 4F and G). Similar analyses 237	

were conducted using PCA and USVA on the same data, where top surrogate factors 238	

obtained with both methods failed to separate different cell types into distinct groups 239	

(Supplementary Figure S6C and D). Combined together these analyses suggest that IA-SVA 240	

is particularly effective in the analyses of complex datasets, which include the measurements 241	

of many cells that are affected by diverse confounding factors.  242	

Discussion 243	

Surrogate variable analyses based methods are effective in detecting and eliminating hidden 244	

and unwanted variation in bulk gene expression data (such as batch effects). By using 245	

dimensionality reduction algorithms (e.g., PCA or SVD), these methods infer linear 246	

transformations of hidden factors and utilize these factor estimates as additional covariates in 247	

downstream analyses to eliminate unwanted variation14. However, measurement of gene 248	

expression levels at single cell resolution pose novel challenges in the detection and 249	

adjustment of hidden sources of data variation. First, single cell transcriptomes harbour 250	

hidden variation that can be biologically interesting (hence ‘wanted’) and can be the major 251	

goal of the study, for example detection of rare cells within a tissue28 or detection of a cell’s 252	

subtypes that can be linked to health or disease27. Second, since single cell data do not 253	

average out variation as in the case of bulk profiling, the data reflect variation arising from 254	

diverse biological and technical sources some of which could be highly correlated. Existing 255	

SVA-based methods do not readily apply to the unique needs of single cell data analyses. To 256	

fill this gap, we developed IA-SVA, where the objective is the accurate estimation of hidden 257	

factors even if these factors are correlated with each other or with the known factors. Unlike 258	

other SVA-based methods, IA-SVA focuses more on the accurate detection and estimation of 259	

hidden factors rather than their elimination since these factors can be biologically interesting, 260	

e.g., identification of a new cell type and its marker genes.  Indeed, analyses on simulated 261	

scRNA-seq data showed that IA-SVA outperforms existing supervised (i.e., SSVA) and 262	

unsupervised (i.e., USVA) state-of-the-art methods in the estimation of hidden factors (not 263	

necessarily in their elimination). Furthermore, we noted that IA-SVA is particularly effective 264	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2018. ; https://doi.org/10.1101/151217doi: bioRxiv preprint 



	 9	

(i.e., high detection power and accuracy, and Type I error rate controlled under the nominal 265	

level of 0.05) in detecting correlated factors that affect a small fraction of genes. Therefore 266	

IA-SVA is an effective unsupervised alternative to existing SVA-based algorithms when the 267	

goal is to accurately estimate hidden factors (and their marker genes) rather than to eliminate 268	

these factors.  269	

Through analyses of diverse human datasets from multiple studies, we established that 270	

IA-SVA can effectively detect hidden heterogeneity in scRNA-seq data arising from a small 271	

number of cells either due to technical (i.e., contamination or doublets) or biological (i.e., a 272	

rare cell type) sources. In two independently generated islet scRNA-seq datasets, we showed 273	

that IA-SVA detects heterogeneity stemming from compromised alpha cells (contaminated or 274	

stacked), which should be excluded from the downstream analyses (Figure 2 and 275	

Supplementary Figure S2). Therefore, IA-SVA provides an easy-to-apply statistical 276	

framework to uncover variation in scRNA-seq data even if it is stemming from only a 277	

handful of cells. This ability of IA-SVA can be effective in identifying rare cells within a 278	

population of cells, where genes associated with the detected factor can uncover relevant 279	

marker genes for the rare population of cells. In addition, IA-SVA can be effective in 280	

detecting heterogeneity associated with cell-cycle stages without prior knowledge, therefore 281	

providing an unsupervised solution to this common problem in single cell data analyses 282	

(Figure 3).  283	

An important feature of IA-SVA is its ability to uncover genes associated with 284	

detected hidden factors. This feature can be used to detect marker genes associated with 285	

different cell types. As a proof-of-concept we demonstrated this in pancreatic islet cells, 286	

where we captured known marker genes (e.g., INS, GCG) in an unsupervised manner. 287	

Moreover, genes captured by IA-SVA can be used to improve the visualization of single cells 288	

into their respective clusters, as demonstrated with the analyses of islet cells from two 289	

separate studies (Figure 4). Spectral tSNE16 is a commonly used method for scRNA-seq data 290	

visualization especially in the existence of confounding factors. This method regresses out 291	

variation associated with known factors before data visualization. However, when a hidden 292	

factor is ‘wanted’ (e.g., cell types) and is highly correlated with known factors, removing the 293	

known factors will also diminish the ability to detect the wanted hidden factor and the genes 294	

associated with this factor (e.g., marker genes for different cell types). Indeed, our analyses 295	

using islet cells emphasized the importance of properly adjusting the data for known factors 296	

prior to further analyses, such as data visualization (e.g., tSNE) to prevent spurious clustering 297	
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of cells due to the confounding factors (Figure 4E). IA-SVA is an alternative method that can 298	

effectively handle data with multiple confounding factors.  299	

In summary, IA-SVA is an SVA-based unsupervised method designed to accurately 300	

estimate hidden factors (sources of variation) in single cell gene expression data while 301	

adjusting for known factors. The iterative and flexible framework of IA-SVA allows the 302	

accurate estimation of multiple and potentially correlated factors along with their statistical 303	

significance, which is the main advantage of IA-SVA over existing methods. This flexibility 304	

is more realistic given the confounded nature of known and unknown factors in single cell 305	

gene expression measurements. Therefore, IA-SVA has an improved performance over 306	

existing SVA-based methods in terms of estimating hidden sources of variation when they 307	

are correlated with each other and with known variables. IA-SVA is an effective alternative 308	

to methods developed for single cell data analyses (e.g., CellView and Seurat), especially for 309	

the analyses of complex data (i.e., data with multiple confounding and correlated factors). 310	

With the increasing amount of single cell studies and the increasing complexity of human 311	

cohorts, IA-SVA will serve as an effective statistical framework specifically designed to 312	

handle unique challenges of scRNA-seq data analyses. 313	

Methods 314	

IA-SVA framework.  315	

We model the log-transformed sequencing read counts for m cells and n genes (i.e., 𝑌!×!) as 316	

a combination of known and unknown variables as follows:  317	

 318	

𝑌!×! = 𝑋!×!𝛽!×! + 𝑍!×!𝛿!×! + 𝜀!×!, 319	

 320	

where 𝑋!×!  is a matrix for p known variable(s) (e.g., group assignment for cases and 321	

controls, sex or ethnicity), 𝑍!×! is a matrix for k unknown variables and 𝜀!×! is the error 322	

term. With this model, we can account for any clinical/experimental information about 323	

samples (e.g., sex, ethnicity, age, BMI or batch) as known factors (𝑋!×!) and dissect 324	

unaccounted variation in the read count data that is attributable to hidden factors (𝑍!×!). 325	

Existing unsupervised SVA-based methods (e.g., USVA10, RUV13, ISVA12) obtain the 326	

residual matrix (𝑌!×!! ) by regressing read counts (𝑌!×!) on all known factors (𝑋!×!). Then, 327	

they infer the hidden factors from this residual matrix (𝑌!×!! ) using dimensionality reduction 328	

algorithms (e.g., PCA, SVD or ICA). Thus, by definition, multiple hidden factors captured by 329	
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these methods are orthogonal to each other and to known variables. Therefore, if hidden 330	

factors are correlated with each other and with known factors, the direct inference from the 331	

residual matrix leads to biased estimates of hidden factors due to the orthogonality 332	

assumption.  333	

In contrast, IA-SVA does not impose orthogonality between factors (hidden or known) 334	

and allows an unbiased estimation of correlated factors via a novel iterative framework 335	

(Figure 1). At each iteration, IA-SVA first obtains residual matrix (𝑌!×!! ), i.e., read counts 336	

adjusted for all known factors (𝑋!×!) including surrogate variables of unknown factors 337	

estimated from previous iterations and extracts the first principal component (PC1) from the 338	

residuals (𝑌!×!! ) using SVD. Next it tests the significance of PC1 in terms of its contribution 339	

to the unmodeled variation (i.e., residual variance). Using this PC1 as a surrogate variable (as 340	

in the case of existing methods) implicitly imposes orthogonality between known and hidden 341	

factors. Instead, IA-SVA uses PC1 to infer gene weights, which are also used to infer genes 342	

associated with the hidden factor. IA-SVA relies on the fact that the first principal component 343	

(PC1) of the residual matrix is highly correlated with the hidden factor that contributes the 344	

most to the unmodeled variation in data, and thus, PC1 can be used to sort genes in terms of 345	

their relative association strength with the hidden factor. To infer these genes, IA-SVA 346	

regresses  on PC1 and calculates the coefficient of determination (R2) for each gene. Genes 347	

with high R2 scores can be treated as marker genes for the factor. These R2 scores are further 348	

utilized for an unbiased inference of the hidden factor while retaining the correlation structure 349	

between known and hidden factors. For this, IA-SVA first obtains a weighted read count 350	

matrix (𝑌!×!!! ) by weighing all genes with respect to their R2 scores (i.e., 𝑌!×!!! = 𝑌!×!𝑊!×!, 351	

where 𝑊 is a diagonal matrix of R2 values). Then it conducts a SVD on 𝑌!×!!!  and obtains the 352	

PC1 to be used as a surrogate variable (SV) for the hidden factor. In the next iteration, IA-353	

SVA uses this SV as an additional known factor to identify further significant hidden factors. 354	

The iterative procedure of IA-SVA is composed of six major steps as summarized in Figure 355	

1A and below:  356	

[Step 1] Regress 𝑌!×! on all known factors (𝑋!×!), including SVs obtained from previous 357	

iterations, to obtain residuals (𝑌!×!! ). 358	

[Step 2] Conduct a SVD on the obtained residuals (𝑌!×!! ) to extract the first PC (PC1). 359	

[Step 3] Test the significance of the contribution of PC1 to the variation in residuals (𝑌!×!! ) 360	

using a non-parametric permutation-based assessment 9,10,29 as explained further in the next 361	

section.  362	

Y
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[Step 4] If PC1 is significant, regress 𝑌!×! (in this case do not use the residual matrix to be 363	

able to capture factors correlated with known factors) on PC1 to compute the coefficient of 364	

determination (R2) for every gene. If PC1 is not significant, stop the iteration and conduct 365	

subsequent down stream analysis using previously obtained significant SVs. 366	

[Step 5] Weigh each gene in 𝑌!×! with respect to its R2 value by multiplying a gene’s read 367	

counts (𝑌!×!) with its R2 values (𝑌!×!!! = 𝑌!×!𝑊!×!). The highly weighted genes in this 368	

framework serve as the genes affected by the hidden factor.  369	

[Step 6] Conduct a second SVD on this weighted read counts matrix (𝑌!×!!! = 𝑌!×!𝑊!×!) to 370	

obtain PC1, which will be used as the surrogate variable (SV) for the hidden factor.  371	

At the end of this six-step procedure, IA-SVA uses the detected SV (if significant) as 372	

an additional known factor in the next iteration. The algorithm stops, when no more 373	

significant PC1s are detected in Step 3. Significant SVs obtained via IA-SVA can be used in 374	

subsequent analyses. If an SV arises from an unwanted factor (e.g., cell contamination), these 375	

SVs can be included as covariates in the model to remove the unwanted variation or to filter 376	

out contaminated cells. In single cell data significant SVs could also explain ‘wanted’ 377	

biological factors (e.g., different cell types) and genes associated with such SVs can be 378	

further evaluated to discover novel biology from these complex datasets. 379	

Assessing the significance of hidden factors.  380	

To test the significance of the contribution of a hidden factor estimate (i.e., PC1 obtained in 381	

Step 2) to the residual variation, we used the permutation based significance test as 382	

previously applied in the surrogate variable analysis 10,29. Unlike SVA 10, which tests all 383	

putative hidden factors at once, IA-SVA assesses the significance of hidden factors one at a 384	

time during the corresponding iteration (always for the PC1 detected in that iteration). Briefly, 385	

IA-SVA i) conducts a SVD on the residual matrix obtained from Step 1, ii) computes the 386	

proportion of variation in this matrix explained by the first singular vector (i.e., PC1) and iii) 387	

compares this proportion against the values obtained from permuted residual matrices, as 388	

further explained below:  389	

[Step 1] Conduct a SVD on the residual matrix (𝑌!×!! ).  390	

[Step 2] Calculate the proportion of residual variance explained by the first singular vector 391	

(PC1) using the test statistic: 𝑇!"# =
!!!

!!
!

!
, where 𝜆! is the k-th singular value.  392	
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[Step 3] Generate a permuted residual matrix by i) permuting each row of the log-393	

transformed read count matrix 𝑌!×! and regressing the permuted read count matrix on all 394	

known factors (𝑋!×!) to obtain fitted residuals.  395	

[Step 4] Repeat Step 3 M times and generate an empirical null distribution of the test statistic 396	

by calculating (𝑇!!, 𝑖 = 1,… ,𝑀) for the M permuted residual matrices.   397	

[Step 5] Compute the empirical p-value for the first singular vector (PC1) by counting the 398	

number of times the null statistics (𝑇!!) exceeds the observed one (𝑇!"#) divided by the 399	

number of permutations (M). 400	

scRNA-seq data simulation.  401	

To eliminate the potential bias in data simulations and make simulation studies more 402	

objective 30, we used a third-party simulation software (Polyester R package 31) and study 403	

design (http://jtleek.com/svaseq/simulateData.html) and simulated scRNA-seq data to test IA-404	

SVA’s performance. The original simulation design is slightly modified to reflect 405	

characteristics of scRNA-seq data for high dropout rate (i.e., excessive number of zeros in the 406	

data) and multiple hidden factors highly correlated with known factors. First, to simulate high 407	

dropout rates (proportion of zero counts = ~70%), we estimated Polyster’s zero-inflated 408	

negative binomial model parameters (i.e., p0: probabilities that the count will be zero, mu: 409	

mean of the negative binomial, size: size of the negative binomial) from real-world scRNA-410	

seq data from human pancreatic islets using the Fludigm’s C1 platform 17. Using these 411	

estimated model parameters, we simulated expression data for m cells and n genes under two 412	

hypotheses: 1) the null hypothesis: no hidden sources of variation, and 2) the alternative 413	

hypothesis: three hidden factors with two values (-1 vs. 1). Under both scenarios, we 414	

simulated a primary variable of interest (i.e., case vs. control) and simulated 10% of genes to 415	

be differentially expressed between the two groups. Under the alternative hypothesis, we 416	

simulated three hidden factors that affect 30%, 20% and 10% of randomly chosen genes 417	

respectively and simulated two different scenarios where these factors are moderately 418	

correlated (|r|=~0.3-0.6) or weakly correlated (|r|<0.3) with the group variable. 419	

Data processing and normalization. 420	

In all analyses, we filtered out low-expressed genes with read counts <= 5 in less than three 421	

cells and normalized the retained gene expression counts using SCnorm19 with default 422	

settings for further analyses. For single cell data visualization examples, we normalized gene 423	
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read counts by dividing each cell column by its total counts then multiplying median of 424	

library size, which is similar to the default normalization method “LogNormalize” 425	

implemented in Seurat 16. 426	

Availability of data and methods.  427	

An R package for IA-SVA with example case scenarios is freely available from 428	

https://github.com/UcarLab/IA-SVA. The published data sets analyzed in this study including 429	

single-cell RNA sequencing read counts and annotations describing samples and experiment 430	

settings are included in an R data package (iasvaExamples) deposited at 431	

https://github.com/dleelab/iasvaExamples. 432	
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Figure Legends   539	

Figure 1. IA-SVA is a robust statistical framework to detect and estimate multiple and 540	

correlated hidden sources of variation. (A) Six-step IA-SVA procedure. IA-SVA computes 541	

the first principal component (PC1) from read counts adjusted for all known factors and tests 542	

its significance [Steps 1-3]. If significant, IA-SVA uses this PC1 to infer a set of genes 543	

associated with the hidden factor [Steps 4-5] and obtain a surrogate variable (SV) to represent 544	

the hidden factor using these genes [Step 6]. (B) IA-SVA uses single-cell gene expression 545	

data matrix and known factors to detect hidden sources of variation (e.g., cell contamination, 546	

cell-cycle status, and cell type). If these factors match to a biological variable of interest (e.g., 547	

cell type assignment), genes highly correlated with the factor can be detected and used in 548	

downstream analyses (e.g., data visualization). 549	

Figure 2. IA-SVA can detect heterogeneity originating from potentially contaminated 550	

alpha cells. (A) Outlier alpha cells captured using IA-SVA and same cells marked in 551	

respective (C) PCA, (D) USVA, and (E) tSNE analyses. Cells are clustered into two groups 552	

(red vs. gray dots) based on IA-SVA’s surrogate variable 2 (SV2 > 0.1). In PCA, PC1 was 553	

discarded since it explains the geometric library size. (B) Hierarchical clustering of alpha 554	

cells using 27 genes significantly associated with SV2 (FDR < 0.05 and R2 > 0.6) (ward.D2 555	

and cutree_cols =2). 6 cells clearly separated from the rest of the alpha cells based on the 556	

expression of these 27 genes. 557	

Figure 3. IA-SVA can detect heterogeneity stemming from differences in cell-cycle stage. 558	

(A) Visualization of glioblastoma cells based on IA-SVA-detected factors (SV1 and SV2). 559	

Same cells are marked in respective analyses with (C) PCA, (D) USVA, and (E) tSNE 560	

analyses. IA-SVA’s SV1 clearly separates cells into two groups (red vs. blue dots, SV1 > 0.1). 561	

Other methods failed to clearly detect this cell-cycle related heterogeneity. (B) Hierarchical 562	

clustering on 119 genes significantly associated (FDR < 0.05 and R2 > 0.3) with IA-SVA’s 563	

SV2 confirms the separation of cells based on these genes (ward.D2 and cutree_cols = 2). (F) 564	

IA-SVA’s SV1 can segregate cells based on their cell-cycle-stage as predicted by SCRAN. 565	

Figure 4. IA-SVA based gene selection enhances single cell data visualization. (A) tSNE 566	

analyses using all expressed genes in human islet data (tSNE). Cells are color-coded based on 567	

the original cell-type assignments. Note that cells are not effectively clustered with respect to 568	

their assigned cell types. (B) Hierarchical clustering using genes (n=92) selected by IA-SVA 569	

clearly separate cell types (ward.D2 and cutree_cols=3). Known marker genes (e.g., INS) are 570	
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highlighted in red color. (C) tSNE analyses using the 92 IA-SVA genes (IA-SVA+tSNE). 571	

Note the improved grouping of cell types into discrete clusters. (D) tSNE analyses using top 572	

variable genes in a second and bigger islet scRNA-seq data. Note that cells are not effectively 573	

clustered with respect to their assigned cell types just using tSNE. (E) tSNE analyses 574	

repeated using genes (n=57) obtained via IA-SVA (IA-SVA+tSNE). Note the improved 575	

clustering of different cell types into discrete clusters. (F) tSNE analyses using 1000 most 576	

over-dispersed genes (CellView). (G) tSNE analyses on significant PCs obtained from highly 577	

over-dispersed genes (Spectral tSNE). 578	

 579	

 580	

 581	

 582	

 583	

 584	

 585	

 586	

 587	

 588	

 589	

 590	

 591	

 592	

 593	

 594	

 595	

 596	

 597	

 598	

 599	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2018. ; https://doi.org/10.1101/151217doi: bioRxiv preprint 



	 19	

Tables  600	

 601	
 USVA SSVA IA-SVA  USVA SSVA IA-SVA 

 |r| = 0.3 ~ 0.6  |r| < 0.3 

Power*(F1**) 1 1 1  1 1 1 

Power  (F2) 1 1 1  1 1 1 

Power  (F3) 0.78 0.78 0.87  1 1 1 

Cor***(F1) 0.93 0.95 0.95  0.98 0.98 1 

Cor      (F2) 0.72 0.75 0.94  0.94 0.94 0.99 

Cor      (F3) 0.75 0.78 0.95  0.93 0.93 0.98 
  

 
 

 USVA SSVA IA-SVA 

Type I error* 0.09 0.09 0.04 

*Nominal Type I error rate: 0.05 
**F1, F2, F3 refers to Factor1, Factor2, and Factor3 
***Average of the absolute Pearson correlation coefficients between the true factor and the  
estimated factor is used as the accuracy measure. 

 602	
Table 1. IA-SVA accurately captures unknown sources of variation while controlling 603	
Type I error rate at a nominal level.  Empirical power, Type I error rate, and the accuracy 604	
of estimates for IA-SVA, SSVA, and USVA assessed using simulated single-cell gene 605	
expression data. Alternative scenarios are simulated in which hidden factors are moderately 606	
(|r|=~0.3-0.6, first three columns) or weakly (|r|<0.3, last three columns) correlated with the 607	
group variable. IA-SVA outperforms alternative methods especially while detecting variation 608	
stemming from a smaller fraction of genes (10%) and especially when factors are correlated. 609	
 610	

 611	
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 612	
Figure 1. IA-SVA is a robust statistical framework to detect and estimate multiple and 613	
correlated hidden sources of variation.  (A) Six-step IA-SVA procedure. IA-SVA 614	
computes the first principal component (PC1) from read counts adjusted for all known factors 615	
and tests its significance [Steps 1-3]. If significant, IA-SVA uses this PC1 to infer a set of 616	
genes associated with the hidden factor [Steps 4-5] and obtain a surrogate variable (SV) to 617	
represent the hidden factor using these genes [Step 6]. (B) IA-SVA uses single-cell gene 618	
expression data matrix and known factors to detect hidden sources of variation (e.g., cell 619	
contamination, cell-cycle status, and cell type). If these factors match to a biological variable 620	
of interest (e.g., cell type assignment), genes highly correlated with the factor can be detected 621	
and used in downstream analyses (e.g., data visualization). 622	
  623	
 624	

 625	

 626	

 627	
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 628	

Figure 2. IA-SVA can detect heterogeneity originating from potentially contaminated 629	
alpha cells. (A) Outlier alpha cells captured using IA-SVA and same cells marked in 630	
respective (C) PCA, (D) USVA, and (E) tSNE analyses. Cells are clustered into two groups 631	
(red vs. gray dots) based on IA-SVA’s surrogate variable 2 (SV2 > 0.1). In PCA, PC1 was 632	
discarded since it explains the geometric library size. (B) Hierarchical clustering of alpha 633	
cells using 27 genes significantly associated with SV2 (FDR < 0.05 and R2 > 0.6) (ward.D2 634	
and cutree_cols =2). 6 cells clearly separated from the rest of the alpha cells based on the 635	
expression of these 27 genes.  636	
 637	

 638	

 639	

 640	

 641	

 642	

 643	

 644	
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 645	
Figure 3. IA-SVA can detect heterogeneity stemming from differences in cell-cycle stage. 646	
(A) Visualization of glioblastoma cells based on IA-SVA-detected factors (SV1 and SV2). 647	
Same cells are marked in respective analyses with (C) PCA, (D) USVA, and (E) tSNE 648	
analyses. IA-SVA’s SV1 clearly separates cells into two groups (red vs. blue dots, SV1 > 0.1). 649	
Other methods failed to clearly detect this cell-cycle related heterogeneity. (B) Hierarchical 650	
clustering on 119 genes significantly associated (FDR < 0.05 and R2 > 0.3) with IA-SVA’s 651	
SV2 confirms the separation of cells based on these genes (ward.D2 and cutree_cols = 2). (F) 652	
IA-SVA’s SV1 can segregate cells based on their cell-cycle-stage as predicted by SCRAN. 653	
 654	
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 655	
Figure 4. IA-SVA based gene selection enhances single cell data visualization. (A) tSNE 656	
analyses using all expressed genes in human islet data (tSNE). Cells are color-coded based on 657	
the original cell-type assignments. Note that cells are not effectively clustered with respect to 658	
their assigned cell types. (B) Hierarchical clustering using genes (n=92) selected by IA-SVA 659	
clearly separate cell types (ward.D2 and cutree_cols=3). Known marker genes (e.g., INS) are 660	
highlighted in red color. (C) tSNE analyses using the 92 IA-SVA genes (IA-SVA+tSNE). 661	
Note the improved grouping of cell types into discrete clusters. (D) tSNE analyses using top 662	
variable genes in a second and bigger islet scRNA-seq data. Note that cells are not effectively 663	
clustered with respect to their assigned cell types just using tSNE. (E) tSNE analyses 664	
repeated using genes (n=57) obtained via IA-SVA (IA-SVA+tSNE). Note the improved 665	
clustering of different cell types into discrete clusters. (F) tSNE analyses using 1000 most 666	
over-dispersed genes (CellView). (G) tSNE analyses on significant PCs obtained from highly 667	
over-dispersed genes (Spectral tSNE). 668	
	669	
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